• Title/Summary/Keyword: Multi-beam Antenna

Search Result 92, Processing Time 0.025 seconds

Complementary Beamforming Method Increasing Throughput in ECMA UWB AAS Systems (ECMA UWB AAS 시스템의 전송률 향상을 위한 보완 빔 방법)

  • Kim, Seok-Hyeon;Ji, Young-Gun;Lee, Hong-Won;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8A
    • /
    • pp.827-835
    • /
    • 2007
  • In this paper, the extension method of data transmission range as adapting AAS(Adaptive Antenna Systems) in ECMA(European Computer Manufacturers Association) standard MB-OFDM(MultiBand-Orthogonal Frequency Division Multiplexing) UWB systems is proposed, and the complementary beamforming method which can solve hidden beam problem when we adapt AAS in CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) systems is proposed. To design the complementary beamforming, Gram-Schmidt orthogonalization is utilized, whose beam pattern exhibits perfect nulling at the main beam angles and provides uniform power for detection of channel utilization out of main beam. The proposed method can be utilized with any arbitrary beamforming when we make main beamforming. Through computer simulation, it can be shown that proposed AAS and complementary beamforming increase data transmission range from 2m to 3.95m in 480Mbps data transmission system and increase throughput about 20% as compared with general UWB AAS systems.

A Study on the MDAS-DR Antenna for Shaping Flat-Topped Radiation Pattern (구형 빔 패턴 형성을 위한 MDAS-DR 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.323-333
    • /
    • 2007
  • In this paper, a new MDAS-DR antenna structure designed to efficiently shape a flat-topped radiation pattern is proposed. The antenna structure is composed of a stacked micro-strip patch exciter and a multi-layered disk array structure(MDAS) surrounded by a dielectric ring. The MDAS, which was supplied by a stacked microstrip patch exciter with radiating power, can form a flat-topped radiation pattern in a far field by a mutual interaction with the surrounding dielectric ring. Therefore, the design parameters of the dielectric ring and the MDAS structure are important design parameters for shaping a flat-topped radiation pattern. The proposed antenna used twelve multi-layered disk array elements and a Teflon material with a dielectric constant of 2.05. An antenna operated at 10 GHz$(9.6\sim10.4\;GHz)$ was designed in order to verify the effectiveness of the proposed antenna structure. The commercial simulator of CST Microwave $Studio^{TM}$, which was adapted to a 3-D antenna structure analysis, was used for the simulation. The antenna breadboard was also fabricated and its electrical performance was measured in an anechoic antenna chamber. The measured results of the antenna breadboard with a flat-topped radiation pattern were found to be in good agreement with the simulated one. The MDAS-DR antenna gain measured at 10 GHz was 11.18 dBi, and the MDAS-DR antenna was capable of shaping a good flat-topped radiation pattern with a beam-width of about $40^{\circ}$, at least within a fractional bandwidth of 8.0 %.

A New Multi-Beam MVDR Technique for Removing Interference Signals in Array Antenna Based GPS Receivers (GPS 수신기에서 간섭신호 제거를 위한 배열 안테나 기반 다중 빔 MVDR 기법)

  • Jeong, Eui-Rim;Won, Hyun-Hee;Yang, Gi-Jung;Ahn, Byoung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.491-498
    • /
    • 2017
  • GPS (global positioning system) is a popular system that provides location information by measuring arrival time difference at the receiver between several GPS satellite signals. GPS is widely used in commercial area as well as military systems. Reliable GPS signal reception is more important in the military applications such as guided missiles. However, since the carrier frequencies of the GPS signals are well known and the received power is extremely low, the GPS systems are vulnerable to intentional jamming attacks. To remove jammers while maintaining GPS signals at the received signals, a popular technique is an adaptive beam steering method based on array antenna. Among adaptive beam steering techniques, this paper considers MVDR (minimum variance distortionless response) algorithm, and proposes a new adaptive technique that preserves the received signals at desired directions, but removes the unknown jamming signals adaptively. The performance of the proposed method is verified through computer simulation.

A Study on Target Incident Signal Estimaion Technique of spatial Spectrum in Wireless Network System (공간 영역 신호에서 다중 빔 형성을 이용한 목표물 추정 방법에 대한 연구)

  • Lee, Kwan-Hyeong;Song, Woo-Young;Lee, Myeong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.137-142
    • /
    • 2013
  • Direction of arrival is estimating for desire signal direction among received signal on antenna in spatial. In this paper, we were an estimation a receiving signal direction of arrival using multi beam forming in radar. We proposed, by signal direction of arrival estimation method, an algorithm which combine spatial correlation matrix weight value and beam steering algorithm in this paper. Through simulation, we were analysis a performance to compare general algorithm and proposal algorithm. In direction of arrival estimation, proposed algorithm is effectivity to decrease processing time because it is not doing an eigen decomposition. We showed that proposal algorithm improve more target estimation than general algorithm.

Design and Performance Evaluation of OBP Satellite B-ISDN Transport Network Architecture (OBP 탑재 n이성 B-ISDN 중계망 구조 설계 및 성능 평가)

  • Park, Seok-Cheon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.901-908
    • /
    • 2000
  • Satellite communication in the 21 century's high tech information world is developing rapidly, marked by high levels of applications and functions. For example, satellite communication can process and switch the speed of the service provided by a broad and vast digital multimedia system such as a long-distance all between nations or broadcasting transfer service, which is supplied by a contemporary satellite system. So, it bring about problems which lack of satellite orbit and gibes out frequency resource by increment of satellite universally. To support this, an OBP satellite system is need, which includes an on-board IF/RF switch, baseband signal processing, multi-beam antenna technology, as well as a simple transponder system. In this paper, we have outlined the next generation of satellite communication; satellite OBP transport network architecture, which offers multimedia service and applied frequency reuse method for multi-spot beam. The satellite B-ISDN transport network architecture is also analyzed.

  • PDF

An Experimental Study on Shaping Flat-Topped Element Patterns of a Multi-layered Disk Array Structure Excited by Cross-Dipole Elements (교차 다이폴 소자 여기에 의한 다층 원형 도체 배열 구조의 구형 빔 패턴 형성에 관한 실험적 연구)

  • 엄순영;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.712-720
    • /
    • 2003
  • In this paper, a multi-layered metallic disk array structure(MDAS) excited by cross-dipole elements was proposed for efficiently shaping of flat-topped element patterns(FTEP) with circular polarization. The MDAS excited by cross-dipole elements has advantages to decrease in volume and weight of an overall array antenna and so, it is appropriate for the FTEP applications of a ralativlely low frequency band. In order to verify the effectness of this structure, the MDAS breadboard operated at X-band(7.9 ∼ 8.4 GHz) was fabricated, and its design parameters were experimentally optimized on the basis of the previous design experience. The experimental results were shown that the MDAS could shape good FTEPs of ${\pm}$20$^{\circ}$beam width at least within a 6.1 % frequency band.

Ka band Communication Payload System Technology of COMS (천리안 위성 Ka 대역 통신탑재체시스템 기술)

  • Lee, Seong-Pal;Jo, Jin-Ho;You, Moon-Hee;Choi, Jang-Sup;Ahn, Ki-Burm
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.75-81
    • /
    • 2010
  • COMS (Communication, Ocean and Meteorological Satellite) is the multi-purposed Korean geostationary satellite funded by four Korean government ministries, and is to supply communication services, ocean and weather observation for 7 years. As part of COMS, development of Ka band communication payload composed of microwave switching transponder and multi-horn antenna is sponsored by KCC (Korea Communications Commission) and developed by ETRI (Electronics and Telecommunications Research Institute). The purpose of Ka Payload development is to acquire space proven technology of Ka payload and to exploit advanced multimedia communication services. This paper aims to study development technology of Ka payload system through whole process of ETRI project. Also application of Ka payload will be dealt in this paper.

Low Complexity Zero-Forcing Beamforming for Distributed Massive MIMO Systems in Large Public Venues

  • Li, Haoming;Leung, Victor C.M.
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.370-382
    • /
    • 2013
  • Distributed massive MIMO systems, which have high bandwidth efficiency and can accommodate a tremendous amount of traffic using algorithms such as zero-forcing beam forming (ZFBF), may be deployed in large public venues with the antennas mounted under-floor. In this case the channel gain matrix H can be modeled as a multi-banded matrix, in which off-diagonal entries decay both exponentially due to heavy human penetration loss and polynomially due to free space propagation loss. To enable practical implementation of such systems, we present a multi-banded matrix inversion algorithm that substantially reduces the complexity of ZFBF by keeping the most significant entries in H and the precoding matrix W. We introduce a parameter p to control the sparsity of H and W and thus achieve the tradeoff between the computational complexity and the system throughput. The proposed algorithm includes dense and sparse precoding versions, providing quadratic and linear complexity, respectively, relative to the number of antennas. We present analysis and numerical evaluations to show that the signal-to-interference ratio (SIR) increases linearly with p in dense precoding. In sparse precoding, we demonstrate the necessity of using directional antennas by both analysis and simulations. When the directional antenna gain increases, the resulting SIR increment in sparse precoding increases linearly with p, while the SIR of dense precoding is much less sensitive to changes in p.

Development of Wide-Band Planar Active Array Antenna System for Electronic Warfare (전자전용 광대역 평면형 능동위상배열 안테나 시스템 개발)

  • Kim, Jae-Duk;Cho, Sang-Wang;Choi, Sam Yeul;Kim, Doo Hwan;Park, Heui Jun;Kim, Dong Hee;Lee, Wang Yong;Kim, In Seon;Lee, Chang Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.467-478
    • /
    • 2019
  • This paper describes the development and measurement results of a wide-band planar active phase array antenna system for an electronic warfare jamming transmitter. The system is designed as an $8{\times}8$ triangular lattice array using a $45^{\circ}$ slant wide-band antenna. The 64-element transmission channel is composed of a wide-band gallium nitride(GaN) solid state power amplifier and a gallium arsenide(GaAs) multi-function core chip(MFC). Each GaAs MFC includes a true-time delay circuit to avoid a wide-band beam squint, a digital attenuator, and a GaAs drive amplifier to electronically steer the transmitted beam over a ${\pm}45^{\circ}$ azimuth angle and ${\pm}25^{\circ}$ elevation angle scan. Measurement of the transmitted beam pattern is conducted using a near-field measurement facility. The EIRP of the designed system, which is 9.8 dB more than the target EIRP performance(P), and the ${\pm}45^{\circ}$ azimuth and ${\pm}25^{\circ}$ elevation beam steering fulfill the desired specifications.

System Design and Evaluation of Digital Retrodirective Array Antenna for High Speed Tracking Performance (고속 추적 특성을 위한 디지털 역지향성 배열 안테나 시스템 설계와 특성 평가)

  • Kim, So-Ra;Ryu, Heung-Gyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.623-628
    • /
    • 2013
  • The retrodirective array antenna system is operated faster than existing techniques of beamforming due to its less complexity. Therefore, it is effective for beam tracking in the environment of fast vehicle. On the other hand, it also has difficulty in estimating AOA according to multipath environment or multiuser signals. To improve the certainty of estimating AOA), this article proposes hybrid digital retrodirective array antenna systme combined with MUSIC algorithm. In this paper, the digital retrodirective array antenna system is designed according to the number of antenna array by using only one digital PLL which finds angle of delayed phase. And we evaluate the performance of the digital retrodirective array antenna for the high speed tracking application. Performance is studied by simulink when the speed of mobile is 300km/h and the distance between transmitter and receiver is 100m and then we have to confirm the performance of the system in multi path environment. As a result, the mean of AOA (Angle Of Arrival) error is $4.2^{\circ}$ when SNR is 10dB and it is $1.3^{\circ}$ when SNR is 20dB. Consequently, the digital RDA shows very good performance for high speed tracking due to the simple calculation and realization.