• Title/Summary/Keyword: Multi-beam

Search Result 1,136, Processing Time 0.028 seconds

The Development of the Beam Rotating Actuator Based on the Bimorph Piezo Material (Bimorph 피에조 소자를 이용한 빔 회전 구동기의 개발)

  • 이정현;한창수;김수현;곽윤근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.450-453
    • /
    • 1995
  • The beam rotating actuator, which can be utilized to improve the data transfer rate for the optical disk systems, has been developed. It can employ a newly developed laser beam rotating actuator for putting multi-beam spots on more than one track on the optical disk simultaneously. Therefore, It has to maintain up to .+-.0.01 .deg. resolution and high bandwidth performance. In this these, the Dove prism is used for the beam rotating actuator based on bimorph piezo material. The performance of the beam rotating actuator is verified since the dynamics ferquency performance is measured using the dynamic analyzer and the attached stain gage sensor. the beam rotating angle performance is also examined since the long range beam reflection character is utilized.

  • PDF

The Development of a Beam Steering System for X-band 2-D Phased Array Antenna (X-대역 2차원 위상배열안테나 빔조향 시스템 개발)

  • Kim, Doo-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.92-98
    • /
    • 2008
  • A beam steering system of X-band 2-D phased array antenna for radar application is developed. The beam steering system consists of real-time command generator, beam steering unit, control PCB of array module and power supply. It plays a role of beam steering and on-line check of phased array antenna. The performance of beam steering system is verified with pulse timing of current control in phase shifters and measurement of far-field of phased array antenna. The developed beam steering system offers basic technology to develop full-scale beam steering system of multi-function radar.

Differential Choice of Radar Beam Scheduling Algorithm According to Radar Load Status (레이더의 부하 상태에 따른 빔 스케줄링 알고리즘의 선택적 적용)

  • Roh, Ji-Eun;Kim, Dong-Hwan;Kim, Seon-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.322-333
    • /
    • 2012
  • AESA radar is able to instantaneously and adaptively position and control the beam, and such adaptive beam pointing of AESA radar enables to remarkably improve the multi-mission capability. For this reason, Radar Resource Management(RRM) becomes new challenging issue. RRM is a technique efficiently allocating finite resources, such as energy and time to each task in an optimal and intelligent way. Especially radar beam scheduling is the most critical component for the success of RRM. In this paper, we proposed a rule-based scheduling algorithm and Simulated Annealing(SA) based scheduling algorithm, which are alternatively selected and applied to beam scheduler according radar load status in real-time. The performance of the proposed algorithm was evaluated on the multi-function radar scenario. As a result, we showed that our proposed algorithm can process a lot of beams at the right time with real time capability, compared with applying only rule-based scheduling algorithm. Additionally, we showed that the proposed algorithm can save scheduling time remarkably, compared with applying only SA-based scheduling algorithm.

Development of Topological Correction Algorithms for ADCP Multibeam Bathymetry Measurements (ADCP 다중빔 수심계측자료의 위상학적 보정 알고리즘 개발)

  • Kim, Dong-Su;Yang, Sung-Kee;Kim, Soo-Jeong;Jung, Woo-Yul
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.543-554
    • /
    • 2013
  • Acoustic Doppler Current Profilers (ADCPs) are increasingly popular in the river research and management communities being primarily used for estimation of stream flows. ADCPs capabilities, however, entail additional features that are not fully explored, such as morphological representation of river or reservoir bed based upon multi-beam depth measurements. In addition to flow velocity, ADCP measurements include river bathymetry information through the depth measurements acquired in individual 4 or 5 beams with a given oblique angle. Such sounding capability indicates that multi-beam ADCPs can be utilized as an efficient depth-sounder to be more capable than the conventional single-beam eco-sounders. The paper introduces the post-processing algorithms required to deal with raw ADCP bathymetry measurements including the following aspects: a) correcting the individual beam depths for tilt (pitch and roll); b) filtering outliers using SMART filters; d) transforming the corrected depths into geographical coordinates by UTM conversion; and, e) tag the beam detecting locations with the concurrent GPS information; f) spatial representation in a GIS package. The developed algorithms are applied for the ADCP bathymetric dataset acquired from Han-Cheon in Jeju Island to validate themselves applicability.

Baseline-free damage detection method for beam structures based on an actual influence line

  • Wang, Ning-Bo;Ren, Wei-Xin;Huang, Tian-Li
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.475-490
    • /
    • 2019
  • The detection of structural damage without a priori information on the healthy state is challenging. In order to address the issue, the study presents a baseline-free approach to detect damage in beam structures based on an actual influence line. In particular, a multi-segment function-fitting calculation is developed to extract the actual deflection influence line (DIL) of a damaged beam from bridge responses due to a passing vehicle. An intact basis function based on the measurement position is introduced. The damage index is defined as the difference between the actual DIL and a constructed function related to the intact basis, and the damage location is indicated based on the local peak value of the damage index curve. The damage basis function is formulated by using the detected damage location. Based on the intact and damage basis functions, damage severity is quantified by fitting the actual DIL using the least-square calculation. Both numerical and experimental examples are provided to investigate the feasibility of the proposed method. The results indicate that the present baseline-free approach is effective in detecting the damage of beam structures.

Beam Tracking Method Using Unscented Kalman Filter for UAV-Enabled NR MIMO-OFDM System with Hybrid Beamforming

  • Yuna, Sim;Seungseok, Sin;Jihun, Cho;Sangmi, Moon;Young-Hwan, You;Cheol Hong, Kim;Intae, Hwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.280-294
    • /
    • 2023
  • Unmanned aerial vehicles (UAVs) and millimeter-wave frequencies play key roles in supporting 5G wireless communication systems. They expand the field of wireless communication by increasing the data capacities of communication systems and supporting high data rates. However, short wavelengths, owing to the high millimeter-wave frequencies can cause problems, such as signal attenuation and path loss. To address these limitations, research on high directional beamforming technologies continue to garner interest. Furthermore, owing to the mobility of the UAVs, it is essential to track the beam angle accurately to obtain full beamforming gain. This study presents a beam tracking method based on the unscented Kalman filter using hybrid beamforming. The simulation results reveal that the proposed beam tracking scheme improves the overall performance in terms of the mean-squared error and spectral efficiency. In addition, by expanding analog beamforming to hybrid beamforming, the proposed algorithm can be used even in multi-user and multi-stream environments to increase data capacity, thereby increasing utilization in new-radio multiple-input multiple-output orthogonal frequency-division multiplexing systems.

Dynamic Characteristics of Composite Thin-Walled Beams with a Chord-Wise Asymmetric Cross-Section: II. Multi-Cell (시위 방향 비대칭 단면의 복합재료 박벽보의 동특성 연구: II. 다중-셀)

  • Kim, Keun-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • Subsequently, Part I [1], which was about the single-cell model, a composite thin-walled beam with a multi-cell of chord-wise asymmetric cross-section, was selected in this study. Moreover, the theoretical dynamic characteristics of the model were analyzed. For this analysis, mathematical modeling was performed by considering the warping restraint effects, transverse shear effects, taper ratio and cross-section ratio. Similar to part I, the mass, stiffness coefficients and Eigen frequencies of the multi-cell section considered were investigated. In particular, the comparison between the multi-cell and single-cell sections and the effects of the cross-section ratio and taper ratio of the model on the Eigen frequencies were analyzed. However, the results compared when the asymmetry of the section was considered and warping function were not corrected.

A Study on the Electrical Design of a Multi-Beam Large Antenna for S-band Satellite Payload (S-대역 위성 탑재용 다중 빔 대형 안테나의 전기적 설계 연구)

  • Yun, So-Heyun;Uhm, Man-Suk;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1240-1247
    • /
    • 2010
  • This paper describes the study on the electrical design of a multi-beam large antenna for a satellite payload. This satellite antenna provides the universal communication and broadcasting services to personal portable terminals over the Korean Peninsula. The structure of the hybrid antenna fed by a feed array is proper to provide multi-beams. The amplitude and phase of each feed element should be optimized for a required beam and they can be obtained by GO (Geometrical Optics) and PO(Physical Optics) method. The number of feed elements are also optimized to meet the specification of EIRP(Effective Isotropically Radiated Power). The optimally designed antenna with the limited reflector size and minimum number of feed elements is shown in this paper.

Geophysical survey around East Sea Research Institute (KORDI) using multi-beam and shallow seismic survey (다중빔 음향측심기 및 천부탄성파 탐사를 이용한 동해연구소 주변 지구물리조사)

  • Jeong, Eui-Young;Kim, Chang-Hwan;Lee, Seung-Hun;Kim, Ho;Park, Chan-Hong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.185-190
    • /
    • 2008
  • Geophysical survey were investigated in the offshore around East Sea Research Institute, Korea Ocean Research and Development Institute (Jukbyeon-myun, Uljin-gu, Gyeongsangbuk-do, Korea). The surveys were conducted aboard the R/V Jangmok in 2008 using a hull-mounted EM 3002 multi-beam echosounder. Precise bathymetry and seabed images were obtained using multi-beam and thicknesses of sedimentary layer were found through seismic survey. Submarine topography deepens parallel to the coastline to -60 m and rock mass distributed in the southeast of study area. By finding the thickness of sedimentary layer through seismic survey, a sedimentary thickness on the study area was established. Futhermore, monitoring data of bathymetry, substructure and sedimentary environment will be secured through successive geophysical investigation.

  • PDF