• Title/Summary/Keyword: Multi-Unit PSA

Search Result 25, Processing Time 0.019 seconds

Remaining and emerging issues pertaining to the human reliability analysis of domestic nuclear power plants

  • Park, Jinkyun;Jeon, Hojun;Kim, Jaewhan;Kim, Namcheol;Park, Seong Kyu;Lee, Seungwoo;Lee, Yong Suk
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1297-1306
    • /
    • 2019
  • Probabilistic safety assessments (PSA) have been used for several decades to visualize the risk level of commercial nuclear power plants (NPPs). Since the role of a human reliability analysis (HRA) is to provide human error probabilities for safety critical tasks to support PSA, PSA quality is strongly affected by HRA quality. Therefore, it is important to understand the underlying limitations or problems of HRA techniques. For this reason, this study conducted a survey among 14 subject matter experts who represent the HRA community of domestic Korean NPPs. As a result, five significant HRA issues were identified: (1) providing a technical basis for the K-HRA (Korean HRA) method, and developing dedicated HRA methods applicable to (2) diverse external events to support Level 1 PSA, (3) digital environments, (4) mobile equipment, and (5) severe accident management guideline tasks to support Level 2 PSA. In addition, an HRA method to support multi-unit PSA was emphasized because it plays an important role in the evaluation of site risk, which is one of the hottest current issues. It is believed that creating such a catalog of prioritized issues will be a good indication of research direction to improve HRA and therefore PSA quality.

Methodology of seismic-response-correlation-coefficient calculation for seismic probabilistic safety assessment of multi-unit nuclear power plants

  • Eem, Seunghyun;Choi, In-Kil;Yang, Beomjoo;Kwag, Shinyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.967-973
    • /
    • 2021
  • In 2011, an earthquake and subsequent tsunami hit the Fukushima Daiichi Nuclear Power Plant, causing simultaneous accidents in several reactors. This accident shows us that if there are several reactors on site, the seismic risk to multiple units is important to consider, in addition to that to single units in isolation. When a seismic event occurs, a seismic-failure correlation exists between the nuclear power plant's structures, systems, and components (SSCs) due to their seismic-response and seismic-capacity correlations. Therefore, it is necessary to evaluate the multi-unit seismic risk by considering the SSCs' seismic-failure-correlation effect. In this study, a methodology is proposed to obtain the seismic-response-correlation coefficient between SSCs to calculate the risk to multi-unit facilities. This coefficient is calculated from a probabilistic multi-unit seismic-response analysis. The seismic-response and seismic-failure-correlation coefficients of the emergency diesel generators installed within the units are successfully derived via the proposed method. In addition, the distribution of the seismic-response-correlation coefficient was observed as a function of the distance between SSCs of various dynamic characteristics. It is demonstrated that the proposed methodology can reasonably derive the seismic-response-correlation coefficient between SSCs, which is the input data for multi-unit seismic probabilistic safety assessment.

Feasibility Study on the Optimization of Offsite Consequence Analysis by Particle Size Distribution Setting and Multi-Threading (입자크기분포 설정 및 멀티스레딩을 통한 소외사고영향분석 최적화 타당성 평가)

  • Seunghwan Kim;Sung-yeop Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.96-103
    • /
    • 2024
  • The demand for mass calculation of offsite consequence analysis to conduct exhaustive single-unit or multi-unit Level 3 PSA is increasing. In order to perform efficient offsite consequence analyses, the Korea Atomic Energy Research Institute is conducting model optimization studies to minimize the analysis time while maintaining the accuracy of the results. A previous study developed a model optimization method using efficient plume segmentation and verified its effectiveness. In this study, we investigated the possibility of optimizing the model through particle size distribution setting by checking the reduction in analysis time and deviation of the results. Our findings indicate that particle size distribution setting affects the results, but its effect on analysis time is insignificant. Therefore, it is advantageous to set the particle size distribution as fine as possible. Furthermore, we evaluated the effect of multithreading and confirmed its efficiency. Future optimization studies should be conducted on various input factors of offsite consequence analysis, such as spatial grid settings.

Study on the Code System for the Off-Site Consequences Assessment of Severe Nuclear Accident (원전 중대사고 연계 소외결말해석 전산체계에 대한 고찰)

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.423-434
    • /
    • 2016
  • The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.

A new method to calculate a standard set of finite cloud dose correction factors for the level 3 probabilistic safety assessment of nuclear power plants

  • Gee Man Lee;Woo Sik Jung
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1225-1233
    • /
    • 2024
  • Level 3 probabilistic safety assessment (PSA) is performed to calculate radionuclide concentrations and exposure dose resulting from nuclear power plant accidents. To calculate the external exposure dose from the released radioactive materials, the radionuclide concentrations are multiplied by two factors of dose coefficient and a finite cloud dose correction factor (FCDCF), and the obtained values are summed. This indicates that a standard set of FCDCFs is required for external exposure dose calculations. To calculate a standard set of FCDCFs, the effective distance from the release point to the receptor along the wind direction should be predetermined. The TID-24190 document published in 1968 provides equations to calculate FCDCFs and the resultant standard set of FCDCFs. However, it does not provide any explanation on the effective distance required to calculate the standard set of FCDCFs. In 2021, Sandia National Laboratories (SNLs) proposed a method to predetermine finite effective distances depending on the atmospheric stability classes A to F, which results in six standard sets of FCDCFs. Meanwhile, independently of the SNLs, the authors of this paper discovered that an infinite effective distance assumption is a very reasonable approach to calculate one standard set of FCDCFs, and they implemented it into the multi-unit radiological consequence calculator (MURCC) code, which is a post-processor of the level 3 PSA codes. This paper calculates and compares short- and long-range FCDCFs calculated using the TID-24190, SNLs method, and MURCC method, and explains the strength of the MURCC method over the SNLs method. Although six standard sets of FCDCFs are required by the SNLs method, one standard sets of FCDCFs are sufficient by the MURCC method. Additionally, the use of the MURCC method and its resultant FCDCFs for level 3 PSA was strongly recommended.