• Title/Summary/Keyword: Multi-Tenant Architecture

Search Result 2, Processing Time 0.014 seconds

Analysis of Data Isolation Methods for Secure Web Site Development in a Multi-Tenancy Environment (멀티테넌시 환경에서 안전한 웹 사이트 개발을 위한 데이터격리 방법 분석)

  • Jeom Goo Kim
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2024
  • Multi-tenancy architecture plays a crucial role in cloud-based services and applications, and data isolation within such environments has emerged as a significant security challenge. This paper investigates various data isolation methods including schema-based isolation, logical isolation, and physical isolation, and compares their respective advantages and disadvantages. It evaluates the practical application and effectiveness of these data isolation methods, proposing security considerations and selection criteria for data isolation in the development of multi-tenant websites. This paper offers important guidance for developers, architects, and system administrators aiming to enhance data security in multi-tenancy environments. It suggests a foundational framework for the design and implementation of efficient and secure multi-tenant websites. Additionally, it provides insights into how the choice of data isolation methods impacts system performance, scalability, maintenance ease, and overall security, exploring ways to improve the security and stability of multi-tenant systems.

De-Centralized Information Flow Control for Cloud Virtual Machines with Blowfish Encryption Algorithm

  • Gurav, Yogesh B.;Patil, Bankat M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.235-247
    • /
    • 2021
  • Today, the cloud computing has become a major demand of many organizations. The major reason behind this expansion is due to its cloud's sharing infrastructure with higher computing efficiency, lower cost and higher fle3xibility. But, still the security is being a hurdle that blocks the success of the cloud computing platform. Therefore, a novel Multi-tenant Decentralized Information Flow Control (MT-DIFC) model is introduced in this research work. The proposed system will encapsulate four types of entities: (1) The central authority (CA), (2) The encryption proxy (EP), (3) Cloud server CS and (4) Multi-tenant Cloud virtual machines. Our contribution resides within the encryption proxy (EP). Initially, the trust level of all the users within each of the cloud is computed using the proposed two-stage trust computational model, wherein the user is categorized bas primary and secondary users. The primary and secondary users vary based on the application and data owner's preference. Based on the computed trust level, the access privilege is provided to the cloud users. In EP, the cipher text information flow security strategy is implemented using the blowfish encryption model. For the data encryption as well as decryption, the key generation is the crucial as well as the challenging part. In this research work, a new optimal key generation is carried out within the blowfish encryption Algorithm. In the blowfish encryption Algorithm, both the data encryption as well as decryption is accomplishment using the newly proposed optimal key. The proposed optimal key has been selected using a new Self Improved Cat and Mouse Based Optimizer (SI-CMBO), which has been an advanced version of the standard Cat and Mouse Based Optimizer. The proposed model is validated in terms of encryption time, decryption time, KPA attacks as well.