• 제목/요약/키워드: Multi-Stage Deep Drawing Process

검색결과 30건 처리시간 0.018초

세장비가 큰 다단계 초정밀 사각형 디프드로잉을 위한 블랭크 설계 (Blank Design in Multi-Stage Rectangular Deep Drawing of Extreme Aspect Ratio)

  • 박철성;구태완;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.258-261
    • /
    • 2003
  • In this study, finite element analysis for multi-stage deep drawing process of rectangular configuration with extreme aspect ratio is carried out especially for the blank design. The analysis of rectangular deep drawing process with extreme aspect ratio is likewise very difficult with respect to the design process parameters including the intermediate die profile. In order to solve the difficulties, numerical approach using finite element method is performed in the present analysis and design. A series of experiments for multi-stage rectangular deep drawing process are conducted and the deformed configuration is investigated by comparing with the results of the finite element analysis. Additionally, to minimize amount of removal material after trimming process, finite element simulation is applied for the blank modification. The analysis incorporates brick elements for a rigid-plastic finite element method with an explicit time integration scheme using LS-DYNA3D.

  • PDF

다단계 ?드로잉 가공에 대한 실험적 연구 (Experimental Study on the Multi-stage Deep Drawing Process)

  • 박민호;김상진;서대교
    • 소성∙가공
    • /
    • 제5권4호
    • /
    • pp.288-296
    • /
    • 1996
  • A method of determining an optimum blank shape for non-circular deep drawing process is extended to the multi-stage deep drawing process. As an example concentric two-stage square deep drawing process is considered and the ideal blank shape with uniform cup height and without flange part after the process is constructed by the backward tracing of rigid plastic FEM. The conventional square blank shapes are also adopted for the comparison of two cases. As a result it is confirmed that the drawn products with better thickness strain distribution and deeper cup depth could be obtained by the suggested ideal blank shapes.

  • PDF

알루미늄 판재의 다단계 드로잉에 있어서 원통컵의 치수 정밀도 비교 (Dimensional Accuracy of Cylindrical Cups in Multi-Stage Drawing of Aluminum Sheet Metal)

  • 최종민;김종호
    • 소성∙가공
    • /
    • 제24권2호
    • /
    • pp.115-120
    • /
    • 2015
  • Deep drawing of cylindrical cups is one of the most fundamental and important processes in sheet metal forming. Circular cups are widely used in industrial fields such as automobile and electronic appliances. Some of these cups are formed by a one-stage process, others such as battery cases and beverage cans are made by a multi-stage process. In the current study the multi-stage deep drawing of aluminum sheet metal is examined. The process consists of two deep drawing operations followed by two ironing operations. The press die, which can be used for the four-stage forming process, was manufactured allowing punch and die components to be easily changed for various experiments. The rolling direction of both the sheet and the drawn cups was always positioned toward the horizontal x-direction on the die face to minimize experimental errors during the progressive forming. The dimensional accuracy of the cylindrical cups formed at each stage and the earing defect due to the anisotropy of sheet were investigated. The influence of anisotropy on the thickness distribution was also examined. Both the thickness and the outer diameter of the cups were measured and compared for each set of experimental conditions. It was found that the dimensional accuracy of cups rapidly improves by employing the ironing process and also by increasing the amount of ironing.

다단계 디프드로잉의 공정해석에 관한 연구 (A Study on the Process Analysis of Multi-Stage Deep Drawing)

  • 심재진;전병희;김낙수
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2936-2948
    • /
    • 1993
  • Multi-stage deep drawing is an important sheet metal forming process. The deformation mechanisms of sheet metals during forming processes are complicated mainly due to the geometry and the lubrication of tools involved, the formability and the anisotropic behaviour of the material. The multi-stage deep-drawing processes including normal-drawing, reverse-drawing, and re-drawing are analyzed by use of the rigid-plastic finite element method. The anisotropic behaviour represented by r-value can be incorporated into the formulation. Punch/die loads and thickness distributions were obtained as results of simulating axisymmetric deep drawing processes. The computed results showed good agreements with experiments.

세장비가 큰 다단계 사각형 디프드로잉 성형공정해석 및 금형설 (FE Analysis and Die Design of The Multi-stage Rectangular Deep Drawing Process with the Large Aspect Ratio)

  • 김홍주;구태완;강범수
    • 소성∙가공
    • /
    • 제10권6호
    • /
    • pp.456-464
    • /
    • 2001
  • Deep drawing and ironing are tile major process today in manufacturing of aluminum alloy battery case used in cellular phone. Most of these process require multi-stage ironing following the deep drawing and redrawing processes. The practical aspects of this technology are well known and gained through extensive experiment and production know-how. However, the fundamental aspects of these processes are relatively less known. Thus, it is expected that process analysis using FEM techniques would provide additional detailed information that could be utilized to improve the process condition. This paper illustrates the application of process modeling to deep drawing and redrawing operations. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product. A commercially available finite element code LS-DYNA3D was used to simulate deep drawing and redrawing operations.

  • PDF

축대칭 다단계 딥드로잉 공정의 성형인자에 대한 연구 (A Study on the Formability Factors of Axisymmetric Multi-Stage Deep Drawing Processes)

  • 여은구;조선형;이용신
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.6-11
    • /
    • 2002
  • Formability in deep drawing process depends not only on a drawability of workpiece material but also on process conditions such as die punch comer radius, lubricant conditions, punch-die clearance etc. For instance, bending resistance should be reduced by increasing die round appropriately, drawing load should be minimized by improving the lubricant condition between die and material, and blanking load should be increased by selecting a pertinent punch round and by augmenting the friction resistance in punch. In this study, a multi-stage deep drawing process is analyzed using ABAQUS. The effects of formability factors, such as die shoulder radius, punch-die clearance and friction coefficient are investigated, and the results are also discussed in detail.

다단계 디프드로잉가공에서의 소재형상설계 및 성형성 (The blank design and the formability for the multi-stage deep drawing process)

  • 박민호;김상진;서대교
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 추계학술대회논문집
    • /
    • pp.111-118
    • /
    • 1995
  • A method of determining an optimum blank shape for the non circular deep drawing process is more investigated and applied to the balnk design for multi-stage deep drawn product. The forming procedure of two-stage deep drawing process is looked over and the method of determining a blank shape is proposed. In experimental research, a optimum blank and a optional rectangular blank were considered and we measured thickness strain distributions. We could predict a strain distribution and compare with a experimental strain distribution. Also, the strain distributions for the blank shapes, optimum and rectangular, were compared.

  • PDF

축대칭 다단계 딥드로잉 공정의 성형인자에 대한 연구 (A Study on the Formability Factors of Axisymmetric Multi-Stage Deep Drawing Processes)

  • 여은구;조선형;이용신
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.280-285
    • /
    • 2001
  • A good drawability of material itself is required. To improve the formability in deep drawing process. Besides that bending resistance should be reduced by increasing die round appropriately, drawing load should be minimized by improving the lubricant condition between die and material, and breaking load should be increased by selecting a pertinent punch round and by augmenting the friction resistance in Punch. In this study, a multi-stage deep drawing process is analyzed using ABAQUS, the effects of formability factors. Such as die shoulder radius, punch-die clearance and friction coefficient are investigated.

  • PDF

강소성 유한요소법을 이용한 다단계 디프드로잉의 공정개선에 관한 연구 (A Study on the Process Improvements of the Multi-stage Deep Drawing by the Rigid-plastic Finite Element Method)

  • 전병희;민동균;김형종;김낙수
    • 소성∙가공
    • /
    • 제3권4호
    • /
    • pp.440-453
    • /
    • 1994
  • The multi-stage deep-drawing processes including normal-drawing, reverse-drawing, and re-drawing are analyzed by use of the rigid-plastic finite element method. Computational results on the punch/die loads and thickness distributions were compared with the experiments of the current drawing processes. Deep-drawing processes of the redesigned shell to improve the specific strength and stiffness were simulated with the numerical method developed. With varying several process parameters such as blank size, corner radii of tools, and clearances, the simulation results showed the improvements in reducing the forming loads. Also forming defects were found during simulation and appropriate blank size could be verified.

  • PDF

세장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석 (Multi-stage Finite Element Inverse Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio)

  • 김승호;김세호;허훈
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.304-312
    • /
    • 2000
  • An inverse finite element approach is employed to efficiently design the optimum blank shape and intermediate shapes from the desired final shape in multi-stage elliptic cup drawing processes. The multi-stage deep-drawing process is difficult to design with the conventional finite element analysis since the process is very complicate with the conventional finite element analysis since the process is very complicated with intermediate shapes and the numerical analysis undergoes the convergence problem even with tremendous computing time. The elliptic cup drawing process needs much effort to design sine it requires full three-dimensional analysis. The inverse analysis is able to omit all complicated and tedious analysis procedures for the optimum process design. In this paper, the finite element inverse analysis provides the thickness strain distribution of each intermediate shape through the multi-stage analysis. The multi-stage analysis deals with the convergence among intermediate shapes and the corresponding sliding constraint surfaces that are described by the analytic function of merged-arc type surfaces.

  • PDF