• 제목/요약/키워드: Multi-Sink

Search Result 122, Processing Time 0.024 seconds

A Design of a Selective Multi Sink GRAdient Broadcast Scheme in Large Scale Wireless Sensor Network (대규모 무선 센서 네트워크 환경을 위한 다중 Sink 브로드캐스팅 기법 설계)

  • Lee, Ho-Sun;Cho, Ik-Lae;Lee, Kyoon-Ha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.239-248
    • /
    • 2005
  • The reliability and efficiency of network must be considered in the large scale wireless sensor networks. Broadcast method must be used rather than unicast method to enhance the reliability of networks. In recently proposed GRAB (GRAdient Broadcast) can certainly enhance reliability of networks fy using broadcast but its efficiency regarding using energy of network is low due to using only one sink. Hence, the lifetime of networks is reduced. In the paper we propose the scheme of SMSGB (Selective Multi Sink Gradient Broadcast) which uses single sink of multi-sink networks. The broadcast based SMSGB can secure reliability of large scale wireless sensor networks. The SMSGB can also use the network's energy evenly via multi sink distribution. Our experiments show that using SMSGB was reliable as GRAB and it increased the network's lifetime by 18% than using GRAB.

  • PDF

On the Need for Efficient Load Balancing in Large-scale RPL Networks with Multi-Sink Topologies

  • Abdullah, Maram;Alsukayti, Ibrahim;Alreshoodi, Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.212-218
    • /
    • 2021
  • Low-power and Lossy Networks (LLNs) have become the common network infrastructure for a wide scope of Internet of Things (IoT) applications. For efficient routing in LLNs, IETF provides a standard solution, namely the IPv6 Routing Protocol for LLNs (RPL). It enables effective interconnectivity with IP networks and flexibly can meet the different application requirements of IoT deployments. However, it still suffers from different open issues, particularly in large-scale setups. These include the node unreachability problem which leads to increasing routing losses at RPL sink nodes. It is a result of the event of memory overflow at LLNs devices due to their limited hardware capabilities. Although this can be alleviated by the establishment of multi-sink topologies, RPL still lacks the support for effective load balancing among multiple sinks. In this paper, we address the need for an efficient multi-sink load balancing solution to enhance the performance of PRL in large-scale scenarios and alleviate the node unreachability problem. We propose a new RPL objective function, Multi-Sink Load Balancing Objective Function (MSLBOF), and introduce the Memory Utilization metrics. MSLBOF enables each RPL node to perform optimal sink selection in a way that insure better memory utilization and effective load balancing. Evaluation results demonstrate the efficiency of MSLBOF in decreasing packet loss and enhancing network stability, compared to MRHOF in standard RPL.

Efficient Mobile Sink Location Management Scheme Using Multi-Ring in Solar-Powered Wireless Sensor Networks

  • Kim, Hyeok;Kang, Minjae;Yoon, Ikjune;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.55-62
    • /
    • 2017
  • In this paper, we proposes a multi-ring based mobile sink location scheme for solar-powered wireless sensor network (WSN). The proposed scheme maintains the multi-rings in which nodes keep the current location of sink node. With the help of nodes in multi-rings, each node can locate the sink node efficiently with low-overhead. Moreover, because our scheme utilizes only surplus energy of a node, it can maintain multiple rings without degrading any performance of each node. Experimental results show that the proposed scheme shows much better latency and scalability with lower energy-consumption than the existing single-ring based scheme.

A multi-radio sink node designed for wireless SHM applications

  • Yuan, Shenfang;Wang, Zilong;Qiu, Lei;Wang, Yang;Liu, Menglong
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.261-282
    • /
    • 2013
  • Structural health monitoring (SHM) is an application area of Wireless Sensor Networks (WSNs) which usually needs high data communication rate to transfer a large amount of monitoring data. Traditional sink node can only process data from one communication channel at the same time because of the single radio chip structure. The sink node constitutes a bottleneck for constructing a high data rate SHM application giving rise to a long data transfer time. Multi-channel communication has been proved to be an efficient method to improve the data throughput by enabling parallel transmissions among different frequency channels. This paper proposes an 8-radio integrated sink node design method based on Field Programmable Gate Array (FPGA) and the time synchronization mechanism for the multi-channel network based on the proposed sink node. Three experiments have been performed to evaluate the data transfer ability of the developed multi-radio sink node and the performance of the time synchronization mechanism. A high data throughput of 1020Kbps of the developed sink node has been proved by experiments using IEEE.805.15.4.

The Performance Analysis of Multi Stage Reheater Organic Rankine Cycle According to Heat Sink Temperature Change (냉열원 온도 변화에 따른 다단재열랭킨사이클의 성능해석)

  • Lee, Ho-Saeng;Lim, Seung-Taek;Kim, Hyeon-Ju
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.11-17
    • /
    • 2016
  • In this study, the simulation for performance comparison between basic single stage organic rankine cycle, multi stage reheater cycle and multi stage reheater & recuperator cycle was carried out. The multi stage reheater cycle and multi stage reheater & recuperator cycle was designed to improve the efficiency for organic rankine cycle using heat source from industrial waste heat and heat sink from deep ocean water. R245fa was selected as a refrigerant for the cycle and system efficiencies were simulated by the variation of the heat sink temperature and the cycle classification. Performance characteristics were simulated by using the Aspen HYSYS. It was confirmed that the system efficiency was decreased by the increase of heat sink temperature. These results can be considered to be applied as geo-ocean thermal energy conversion in where plenty of geothermal or ocean thermal resource exist.

EEDARS: An Energy-Efficient Dual-Sink Algorithm with Role Switching Mechanism for Event-Driven Wireless Sensor Networks

  • Eslaminejad, Mohammadreza;Razak, Shukor Abd;Ismail, Abdul Samad Haji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2473-2492
    • /
    • 2012
  • Energy conservation is a vital issue in wireless sensor networks. Recently, employing mobile sinks for data gathering become a pervasive trend to deal with this problem. The sink can follow stochastic or pre-defined paths; however the controlled mobility pattern nowadays is taken more into consideration. In this method, the sink moves across the network autonomously and changes its position based on the energy factors. Although the sink mobility would reduce nodes' energy consumption and enhance the network lifetime, the overhead caused by topological changes could waste unnecessary power through the sensor field. In this paper, we proposed EEDARS, an energy-efficient dual-sink algorithm with role switching mechanism which utilizes both static and mobile sinks. The static sink is engaged to avoid any periodic flooding for sink localization, while the mobile sink adaptively moves towards the event region for data collection. Furthermore, a role switching mechanism is applied to the protocol in order to send the nearest sink to the recent event area, hence shorten the path. This algorithm could be employed in event-driven and multi-hop scenarios. Analytical model and extensive simulation results for EEDARS demonstrate a significant improvement on the network metrics especially the lifetime, the load and the end-to-end delay.

Operating Characteristics of LED Package Heat-sink with Multi-Pin's (멀티-핀을 갖는 LED 패키지 방열장치의 동작특성)

  • Choi, Hoon;Han, Sang-Bo;Park, Jae-Youn
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.1-12
    • /
    • 2014
  • This paper is proposed to design the new heat-sink apparatus for improving the heat transfer characteristics in the power LED chip, and results of the operation characteristics were discussed. The core design is that the soldering through-hole on the FR-4 PCB board is formed to the effective heat transfer. That is directly filled with Ag-nano materials, which shows the high thermal conductivity. The heat transfer medium consisting of Ag-nano materials is classified into two structures. Mediums are called as the heat slug and the multi-pin in this work. The heat of the high temperature generated from the LED chip was directly transferred to the heat slug of the one large size. And the accumulated heat from the heat slug was quickly dissipated by the medium of the multi-pin, which is the same body with the heat slug. This multi-pin was designed for the multi-dissipation of heat by increasing the surface areas with a little pins. Subsequently, the speed of the heat transfer with this new heat-sink apparatus is three times faster than the conventional heat-sink. Therefore, the efficiency of the illuminating light will be improved by adapting this new heat-sink apparatus in the large area's LED.

A Study on Sink Mark of Injection Molded Products (사출성형부품의 싱크마크에 관한 연구)

  • 서윤수;김영호;임동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.811-814
    • /
    • 1997
  • The injection molding process has been developed as a very important technology for the automotive and electric industries in recent years. But, in the injection molding products with rib-web structures, partial deformation by thermal volumetric shrinkage called Sink Mark, is occurred. In this study, to make explicitly characteristics of sink mechanism, an experimental approach was taken by using multi T-shaped mold cavity and FEM simulation. As a result, pressure on the packing process and the rib thickness are the most effective on sink mark depth. On the other hand, melt temperature has no effect on sink mark depth fot the same rib thickness.

  • PDF

Efficient Packet Transmission Mechanism for Multi-hop Wireless Sensor Networks (멀티-홉 무선 센서 네트워크에서 효율적인 패킷 전송 메커니즘)

  • Jeon, Jun Heon;Kim, Seong Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.492-498
    • /
    • 2015
  • In general, data packets from sensor nodes are transferred to the sink node in a wireless sensor networks. So many data packets are gathered around the sink node, resulting in significant packet collision and delay. In this paper, we propose an efficient packet transmission mechanism for multi-hop wireless sensor networks. The proposed mechanism is composed of two modes. One mode works between sink node and 1-hop nodes from sink. In this mode, data packets are transmitted in predefined time slots to reduce collisions. The other mode works between other nodes except sink node. In this mode, duplicated packets from neighbor nodes can be detected and dropped using some control signals. Our numerical analysis and simulation results show that our mechanism outperforms X-MAC and RI-MAC in terms of energy consumption and transmission delay.

An Experiment on Heat Dissipation from Aluminum foam Heat Sinks in an Air Multi-Jet Impingement (다중 충돌 공기제트에서 발포 알루미늄 방열기의 방열 특성 실험)

  • Lee, Myeong-Ho;Kim, Seo-Yeong;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1115-1122
    • /
    • 2002
  • The present experiment investigates the effects of pore density f of aluminum foam heat sinks, the jet-to-jet spacing X and the nozzle plate-to-target surface spacing H of 3$\times$3 square impinging arrays on the averaged Nusselt number. The performance of the aluminum foam heat sinks and the rectangular plate heat sink is evaluated in terms of the enhancement factor. /equation omitted/. The multiple impinging jet with X/d=4.0 displays higher Nusselt numbers than single impinging jet for 12.0$\leq$H/d$\leq$20.0. With the variation of the jet-to-jet spacing, the aluminum foam heat sink of 10 PPI show higher Nusselt numbers than the 20 and 40 PPI aluminum foam heat sinks. Further, the 10 PPI aluminum foam heat sink demonstrates 26% higher enhancement factor than the rectangular plate heat sink in the range of 7000$\leq$Re$\leq$11000.