• Title/Summary/Keyword: Multi-Sensor Model

Search Result 309, Processing Time 0.031 seconds

Selective Histogram Matching of Multi-temporal High Resolution Satellite Images Considering Shadow Effects in Urban Area (도심지역의 그림자 영향을 고려한 다시기 고해상도 위성영상의 선택적 히스토그램 매칭)

  • Yeom, Jun-Ho;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • Additional high resolution satellite images, other period or site, are essential for efficient city modeling and analysis. However, the same ground objects have a radiometric inconsistency in different satellite images and it debase the quality of image processing and analysis. Moreover, in an urban area, buildings, trees, bridges, and other artificial objects cause shadow effects, which lower the performance of relative radiometric normalization. Therefore, in this study, we exclude shadow areas and suggest the selective histogram matching methods for image based application without supplementary digital elevation model or geometric informations of sun and sensor. We extract the shadow objects first using adjacency informations with the building edge buffer and spatial and spectral attributes derived from the image segmentation. And, Outlier objects like a asphalt roads are removed. Finally, selective histogram matching is performed from the shadow masked multi-temporal Quickbird-2 images.

Layout optimization of wireless sensor networks for structural health monitoring

  • Jalsan, Khash-Erdene;Soman, Rohan N.;Flouri, Kallirroi;Kyriakides, Marios A.;Feltrin, Glauco;Onoufriou, Toula
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.39-54
    • /
    • 2014
  • Node layout optimization of structural wireless systems is investigated as a means to prolong the network lifetime without, if possible, compromising information quality of the measurement data. The trade-off between these antagonistic objectives is studied within a multi-objective layout optimization framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end user can select the final layout. The information quality of the measurement data collected from a heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. The network lifetime or equivalently the network energy consumption is estimated through WSN simulation that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a discrete-event simulator with stochastic communication models. Finally, we compare the optimization results with those obtained in a previous work where the network energy consumption is obtained via deterministic communication models.

Ambient modal identification of structures equipped with tuned mass dampers using parallel factor blind source separation

  • Sadhu, A.;Hazraa, B.;Narasimhan, S.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.257-280
    • /
    • 2014
  • In this paper, a novel PARAllel FACtor (PARAFAC) decomposition based Blind Source Separation (BSS) algorithm is proposed for modal identification of structures equipped with tuned mass dampers. Tuned mass dampers (TMDs) are extremely effective vibration absorbers in tall flexible structures, but prone to get de-tuned due to accidental changes in structural properties, alteration in operating conditions, and incorrect design forecasts. Presence of closely spaced modes in structures coupled with TMDs renders output-only modal identification difficult. Over the last decade, second-order BSS algorithms have shown significant promise in the area of ambient modal identification. These methods employ joint diagonalization of covariance matrices of measurements to estimate the mixing matrix (mode shape coefficients) and sources (modal responses). Recently, PARAFAC BSS model has evolved as a powerful multi-linear algebra tool for decomposing an $n^{th}$ order tensor into a number of rank-1 tensors. This method is utilized in the context of modal identification in the present study. Covariance matrices of measurements at several lags are used to form a $3^{rd}$ order tensor and then PARAFAC decomposition is employed to obtain the desired number of components, comprising of modal responses and the mixing matrix. The strong uniqueness properties of PARAFAC models enable direct source separation with fine spectral resolution even in cases where the number of sensor observations is less compared to the number of target modes, i.e., the underdetermined case. This capability is exploited to separate closely spaced modes of the TMDs using partial measurements, and subsequently to estimate modal parameters. The proposed method is validated using extensive numerical studies comprising of multi-degree-of-freedom simulation models equipped with TMDs, as well as with an experimental set-up.

The Effect of Process Models on Short-term Prediction of Moving Objects for Autonomous Driving

  • Madhavan Raj;Schlenoff Craig
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.509-523
    • /
    • 2005
  • We are developing a novel framework, PRIDE (PRediction In Dynamic Environments), to perform moving object prediction (MOP) for autonomous ground vehicles. The underlying concept is based upon a multi-resolutional, hierarchical approach which incorporates multiple prediction algorithms into a single, unifying framework. The lower levels of the framework utilize estimation-theoretic short-term predictions while the upper levels utilize a probabilistic prediction approach based on situation recognition with an underlying cost model. The estimation-theoretic short-term prediction is via an extended Kalman filter-based algorithm using sensor data to predict the future location of moving objects with an associated confidence measure. The proposed estimation-theoretic approach does not incorporate a priori knowledge such as road networks and traffic signage and assumes uninfluenced constant trajectory and is thus suited for short-term prediction in both on-road and off-road driving. In this article, we analyze the complementary role played by vehicle kinematic models in such short-term prediction of moving objects. In particular, the importance of vehicle process models and their effect on predicting the positions and orientations of moving objects for autonomous ground vehicle navigation are examined. We present results using field data obtained from different autonomous ground vehicles operating in outdoor environments.

Service Selection Model using Situation in Ubiquitous Computing Environment (상황 정보를 이용한 서비스 제공 모델)

  • Lee, Keon-Soo;Kim, Min-Koo
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.368-373
    • /
    • 2006
  • 본 연구는 다중 사용자가 존재하는 환경에서 각 사용자의 요구를 만족시킬 수 있는 서비스를 탐색하고, 선택된 서비스를 또 다른 사용자에게 제공되는 서비스와의 충돌 없이 제공하기 위한 서비스 선택 모델을 제안한다. 이 모델은 개별 사용자의 프로파일을 관리하는 사용자 에이전트(User Agent), 환경 정보를 인지하는 센서 매니저(Sensor Manager), 현 환경에 존재하는 기기들의 상태를 관리하는 장치 매니저(Device Manager), 그리고 개별 서비스들 사이의 충돌을 회피하고 서비스를 선택하는 서비스 브로커 (Service Broker) 의 4 가지 타입의 에이전트로 구성되어있다. 사용자 에이전트는 사용자의 과거 행동 정보로부터 사용자의 선호 패턴 및 프로파일을 추출해 낸다. 센서 매니저는 현재 환경에 존재하는 센서들로부터 전달받은 환경 정보를 조합함으로써, 현재 상황을 특징 짓는다. 사용자 에이전트와 센서 매니저로부터 현재 사용자의 특성과 현재 상황 정보를 전달 받은 서비스 브로커는 그 사용자가 현재 상황에서 어떠한 서비스를 필요로 하고 있는지 판단한다. 서비스 선택은 인지된 현재 상황에서 수행 가능한 서비스 목록 중에서, 사용자의 선호도 및 프로파일에 의해 적절한 서비스가 선택 된다. 이렇게 선택된 서비스는 그 서비스를 제공하기 위한 장치들의 작동을 제어함으로써 사용자에게 제공된다. 서비스를 위한 장치를 선택하고, 작업을 할당하기 위해 서비스 브로커는 장치 매니저를 통해 현재 사용 가능한 장치들의 상태와 제공하려는 서비스와 충돌을 일으킬 수 있는 장치들의 상태 정보를 받아와 서비스를 위한 최적의 장치들을 선택하고 동작에 대한 제어 정보를 작성한다. 이렇게 만들어진 서비스 제공 계획은 장치 매니저에게 전달되고, 장치 매니저는 계획에 따라 실제 장치들을 제어한다. 이상의 다중 에이전트 모델을 통해, 특정 상황에 존재하는 사용자 개개인에게 특성화된 서비스를 충돌 없이 제공할 수 있다.

  • PDF

Track Tension Monitoring in the Longitudinal Traveling of Tracked Vehicles (궤도차량의 직진주행시 궤도장력 감지)

  • Heo, Geon-Su;Jo, Byeong-Hui;Seo, Mun-Seok;Seo, Il-Seong;Park, Dong-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1608-1615
    • /
    • 2000
  • The track tension is closely related to the maneuverability of tracked vehicles and the durability of tracks and suspension systems. In order to minimize the excessive load on the tracks and to pre vent the peal-off of tracks from the road wheels, it is required to maintain the optimum track tension throughout the maneuver. However, the track tension cannot be easily measured due to the limitation in the sensor technology, harsh environment, etc. In this paper an indirect track tension monitoring system is developed based on idler assembly models, a geometric relation around the idler, and the tractive force estimated by using the Extended Kalman Filter. The performance of the tension monitoring system is verified with the results obtained from the Multi-Body Dynamics model.

Analysis of temperature monitoring data for leakage detection of earth dam (흙댐의 누수구역 판별을 위한 온도 모니터링 자료의 해석)

  • Oh, Seok-Hoon;Seo, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.39-45
    • /
    • 2008
  • Temperature variation according to space and time on the inner parts of engineering constructions(e.g.: dam, slope) can be a basic information for diagnosing their safety problem. In general, as constructions become superannuated, structural deformation(e.g.: cracks, defects) could be occurred by various factors. Seepage or leakage of water through these cracks or defects in old dams will directly cause temperature anomaly. Groundwater level also can be easily observed by abrupt change of temperature on the level. This study shows that the position of seepage or leakage in dam body can be detected by multi-channel temperature monitoring using thermal line sensor. For this, diverse temperature monitoring experiments for a leakage physical model were performed in the laboratory. In field application of an old earth fill dam, temperature variations for water depth and for inner parts of boreholes located at downstream slope were measured. Temperature monitoring results for a long time at the bottom of downstream slope of the dam showed the possibility that temperature monitoring can provide the synthetic information about flowing path and quantity of seepage of leakage in dam body.

  • PDF

Multi-channel Speech Enhancement Using Blind Source Separation and Cross-channel Wiener Filtering

  • Jang, Gil-Jin;Choi, Chang-Kyu;Lee, Yong-Beom;Kim, Jeong-Su;Kim, Sang-Ryong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2E
    • /
    • pp.56-67
    • /
    • 2004
  • Despite abundant research outcomes of blind source separation (BSS) in many types of simulated environments, their performances are still not satisfactory to be applied to the real environments. The major obstacle may seem the finite filter length of the assumed mixing model and the nonlinear sensor noises. This paper presents a two-step speech enhancement method with multiple microphone inputs. The first step performs a frequency-domain BSS algorithm to produce multiple outputs without any prior knowledge of the mixed source signals. The second step further removes the remaining cross-channel interference by a spectral cancellation approach using a probabilistic source absence/presence detection technique. The desired primary source is detected every frame of the signal, and the secondary source is estimated in the power spectral domain using the other BSS output as a reference interfering source. Then the estimated secondary source is subtracted to reduce the cross-channel interference. Our experimental results show good separation enhancement performances on the real recordings of speech and music signals compared to the conventional BSS methods.

Development of Multi-scale Model for Concrete Strength Estimation using Intelligent Self-diagnostic sensor (지능형 자가진단센서를 이용한 콘크리트 강도추정을 위한 다중스케일모델 개발)

  • Kim, Dong-Jin;Park, Woong-Ki;Lee, Chang-Gil;Hong, Seok-Inn;Park, Seung-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.303-306
    • /
    • 2011
  • 본 논문은 콘크리트의 양생 강도 발현을 모니터링하기 위하여 매립형 압전 센서를 이용하여 콘크리트 내부의 임피던스 및 유도초음파 신호를 측정함으로써, 콘크리트의 양생 강도를 실시간 추정할 수 있는 기법을 개발하였다. 임피던스 및 유도초음파 신호는 구조물의 물성을 나타내며 특히 양생 기간 중 임피던스 및 유도초음파의 변화는 해당 콘크리트 구조물의 강도변화를 나타낼 수 있다. 이를 이용하여 매립형 압전 센서로부터 저비용의 셀프 센싱 기반 임피던스 및 유도초음파를 계측하여 콘크리트의 임피던스 공진 주파수 및 유도초음파의 전달 강도를 측정하고 측정된 신호를 통하여 콘크리트 양생 강도를 추정할 수 있게 된다. 제안된 기법의 적용가능성을 검증하기 위하여 설계 압축강도 30MPa의 콘크리트 슬라브 내부에 매립형 압전 센서를 매립하고 양생기간 동안 임피던스 및 유도초음파 신호를 측정, 비교 분석 하였다. 측정된 신호 및 압축강도를 통하여 임피던스 및 유도초음파 기반 강도 추정 모델을 도출하고 보다 높은 정확도를 얻기 위해 다중스케일 강도 추정 모델을 개발하였다. 결과적으로 본 연구를 통해 매립형 압전 센서를 이용하여 콘크리트의 양생 강도를 실시간 모니터링할 수 있음이 검증되었다.

  • PDF

Neural Network-Based Modeling for Fuel Consumption Prediction of Vehicle (차량 연료 소모량 예측을 위한 신경회로망 기반 모델링)

  • Lee, Min-Goo;Jung, Kyung-Kwon;Yi, Sang-Hoi
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.19-25
    • /
    • 2011
  • This paper presented neural network modeling method using vehicle data to predict fuel consumption. To acquire data for training and testing the proposed neural network, medium-class gasoline vehicle drove at downtown and parameters measured include speed, engine rpm, throttle position sensor (TPS), and mass air flow (MAF) as input data, and fuel consumption as target data from OBD-II port. Multi layer perception network was used for nonlinear mapping between the input and the output data. It was observed that the neural network model can predict the vehicle quite well with mean squared error was $1.306{\times}10^{-6}$ for the fuel consumption.