• Title/Summary/Keyword: Multi-Sensor Image

Search Result 286, Processing Time 0.03 seconds

Performance Evaluation of Pansharpening Algorithms for WorldView-3 Satellite Imagery

  • Kim, Gu Hyeok;Park, Nyung Hee;Choi, Seok Keun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.413-423
    • /
    • 2016
  • Worldview-3 satellite sensor provides panchromatic image with high-spatial resolution and 8-band multispectral images. Therefore, an image-sharpening technique, which sharpens the spatial resolution of multispectral images by using high-spatial resolution panchromatic images, is essential for various applications of Worldview-3 images based on image interpretation and processing. The existing pansharpening algorithms tend to tradeoff between spectral distortion and spatial enhancement. In this study, we applied six pansharpening algorithms to Worldview-3 satellite imagery and assessed the quality of pansharpened images qualitatively and quantitatively. We also analyzed the effects of time lag for each multispectral band during the pansharpening process. Quantitative assessment of pansharpened images was performed by comparing ERGAS (Erreur Relative Globale Adimensionnelle de Synthèse), SAM (Spectral Angle Mapper), Q-index and sCC (spatial Correlation Coefficient) based on real data set. In experiment, quantitative results obtained by MRA (Multi-Resolution Analysis)-based algorithm were better than those by the CS (Component Substitution)-based algorithm. Nevertheless, qualitative quality of spectral information was similar to each other. In addition, images obtained by the CS-based algorithm and by division of two multispectral sensors were shaper in terms of spatial quality than those obtained by the other pansharpening algorithm. Therefore, there is a need to determine a pansharpening method for Worldview-3 images for application to remote sensing data, such as spectral and spatial information-based applications.

Characteristics of the Electro-Optical Camera(EOC)

  • Lee, Seung-Hoon;Shim, Hyung-Sik;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.313-318
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of Korea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including Digital Terrain Elevation Map(DTEM). This instrument which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510 ~ 730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable rain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the EOC data users. The modulation transfer function of EOC was measured as greater than 16% at Nyquist frequency over the entire field of view which exceeds its requirement of larger than 10%, The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.

  • PDF

Classification Strategies for High Resolution Images of Korean Forests: A Case Study of Namhansansung Provincial Park, Korea

  • Park, Chong-Hwa;Choi, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.708-708
    • /
    • 2002
  • Recent developments in sensor technologies have provided remotely sensed data with very high spatial resolution. In order to fully utilize the potential of high resolution images, new image classification strategies are necessary. Unfortunately, the high resolution images increase the spectral within-field variability, and the classification accuracy of traditional methods based on pixel-based classification algorithms such as Maximum-Likelihood method may be decreased (Schiewe 2001). Recent development in Object Oriented Classification based on image segmentation algorithms can be used for the classification of forest patches on rugged terrain of Korea. The objectives of this paper are as follows. First, to compare the pros and cons of image classification methods based on pixel-based and object oriented classification algorithm for the forest patch classification. Landsat ETM+ data and IKONOS data will be used for the classification. Second, to investigate ways to increase classification accuracy of forest patches. Supplemental data such as DTM and Forest Type Map of 1:25,000 scale are used for topographic correction and image segmentation. Third, to propose the best classification strategy for forest patch classification in terms of accuracy and data requirement. The research site for this paper is Namhansansung Provincial Park located at the eastern suburb of Seoul Metropolitan City for its diverse forest patch types and data availability. Both Landsat ETM+ and IKONOS data are used for the classification. Preliminary results can be summarized as follows. First, topographic correction of reflectance is essential for the classification of forest patches on rugged terrain. Second, object oriented classification of IKONOS data enables higher classification accuracy compared to Landsat ETM+ and pixel-based classification. Third, multi-stage segmentation is very useful to investigate landscape ecological aspect of forest communities of Korea.

  • PDF

RPC Model Generation from the Physical Sensor Model (영상의 물리적 센서모델을 이용한 RPC 모델 추출)

  • Kim, Hye-Jin;Kim, Jae-Bin;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.4 s.27
    • /
    • pp.21-27
    • /
    • 2003
  • The rational polynomial coefficients(RPC) model is a generalized sensor model that is used as an alternative for the physical sensor model for IKONOS-2 and QuickBird. As the number of sensors increases along with greater complexity, and as the need for standard sensor model has become important, the applicability of the RPC model is also increasing. The RPC model can be substituted for all sensor models, such as the projective camera the linear pushbroom sensor and the SAR This paper is aimed at generating a RPC model from the physical sensor model of the KOMPSAT-1(Korean Multi-Purpose Satellite) and aerial photography. The KOMPSAT-1 collects $510{\sim}730nm$ panchromatic images with a ground sample distance (GSD) of 6.6m and a swath width of 17 km by pushbroom scanning. We generated the RPC from a physical sensor model of KOMPSAT-1 and aerial photography. The iterative least square solution based on Levenberg-Marquardt algorithm is used to estimate the RPC. In addition, data normalization and regularization are applied to improve the accuracy and minimize noise. And the accuracy of the test was evaluated based on the 2-D image coordinates. From this test, we were able to find that the RPC model is suitable for both KOMPSAT-1 and aerial photography.

  • PDF

Object-based Change Detection using Various Pixel-based Change Detection Results and Registration Noise (다양한 화소기반 변화탐지 결과와 등록오차를 이용한 객체기반 변화탐지)

  • Jung, Se Jung;Kim, Tae Heon;Lee, Won Hee;Han, You Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.481-489
    • /
    • 2019
  • Change detection, one of the main applications of multi-temporal satellite images, is an indicator that directly reflects changes in human activity. Change detection can be divided into pixel-based change detection and object-based change detection. Although pixel-based change detection is traditional method which is mostly used because of its simple algorithms and relatively easy quantitative analysis, applying this method in VHR (Very High Resolution) images cause misdetection or noise. Because of this, pixel-based change detection is less utilized in VHR images. In addition, the sensor of acquisition or geographical characteristics bring registration noise even if co-registration is conducted. Registration noise is a barrier that reduces accuracy when extracting spatial information for utilizing VHR images. In this study object-based change detection of VHR images was performed considering registration noise. In this case, object-based change detection results were derived considering various pixel-based change detection methods, and the major voting technique was applied in the process with segmentation image. The final object-based change detection result applied by the proposed method was compared its performance with other results through reference data.

Red Tide Detection through Image Fusion of GOCI and Landsat OLI (GOCI와 Landsat OLI 영상 융합을 통한 적조 탐지)

  • Shin, Jisun;Kim, Keunyong;Min, Jee-Eun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.377-391
    • /
    • 2018
  • In order to efficiently monitor red tide over a wide range, the need for red tide detection using remote sensing is increasing. However, the previous studies focus on the development of red tide detection algorithm for ocean colour sensor. In this study, we propose the use of multi-sensor to improve the inaccuracy for red tide detection and remote sensing data in coastal areas with high turbidity, which are pointed out as limitations of satellite-based red tide monitoring. The study area were selected based on the red tide information provided by National Institute of Fisheries Science, and spatial fusion and spectral-based fusion were attempted using GOCI image as ocean colour sensor and Landsat OLI image as terrestrial sensor. Through spatial fusion of the two images, both the red tide of the coastal area and the outer sea areas, where the quality of Landsat OLI image was low, which were impossible to observe in GOCI images, showed improved detection results. As a result of spectral-based fusion performed by feature-level and rawdata-level, there was no significant difference in red tide distribution patterns derived from the two methods. However, in the feature-level method, the red tide area tends to overestimated as spatial resolution of the image low. As a result of pixel segmentation by linear spectral unmixing method, the difference in the red tide area was found to increase as the number of pixels with low red tide ratio increased. For rawdata-level, Gram-Schmidt sharpening method estimated a somewhat larger area than PC spectral sharpening method, but no significant difference was observed. In this study, it is shown that coastal red tide with high turbidity as well as outer sea areas can be detected through spatial fusion of ocean colour and terrestrial sensor. Also, by presenting various spectral-based fusion methods, more accurate red tide area estimation method is suggested. It is expected that this result will provide more precise detection of red tide around the Korean peninsula and accurate red tide area information needed to determine countermeasure to effectively control red tide.

Intelligent Abnormal Situation Event Detections for Smart Home Users Using Lidar, Vision, and Audio Sensors (스마트 홈 사용자를 위한 라이다, 영상, 오디오 센서를 이용한 인공지능 이상징후 탐지 알고리즘)

  • Kim, Da-hyeon;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.17-26
    • /
    • 2021
  • Recently, COVID-19 has spread and time to stay at home has been increasing in accordance with quarantine guidelines of the government such as recommendations to refrain from going out. As a result, the number of single-person households staying at home is also increasingsingle-person households are less likely to be notified to the outside world in times of emergency than multi-person households. This study collects various situations occurring in the home with lidar, image, and voice sensors and analyzes the data according to the sensors through their respective algorithms. Using this method, we analyzed abnormal patterns such as emergency situations and conducted research to detect abnormal signs in humans. Artificial intelligence algorithms that detect abnormalities in people by each sensor were studied and the accuracy of anomaly detection was measured according to the sensor. Furthermore, this work proposes a fusion method that complements the pros and cons between sensors by experimenting with the detectability of sensors for various situations.

Epipolar Image Resampling from Kompsat-3 In-track Stereo Images (아리랑3호 스테레오 영상의 에피폴라 기하 분석 및 영상 리샘플링)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.455-461
    • /
    • 2013
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. The AEISS sensor of the Korean satellite provides 0.7m panchromatic and 2.8m multi-spectral images with 16.8km swath width from the sun-synchronous near-circular orbit of 685km altitude. Kompsat-3 is more advanced than Kompsat-2 and the improvements include better agility such as in-track stereo acquisition capability. This study investigated the characteristic of the epipolar curves of in-track Kompsat-3 stereo images. To this end we used the RPCs(Rational Polynomial Coefficients) to derive the epipolar curves over the entire image area and found out that the third order polynomial equation is required to model the curves. In addition, we could observe two different groups of curve patterns due to the dual CCDs of AEISS sensor. From the experiment we concluded that the third order polynomial-based RPCs update is required to minimize the sample direction image distortion. Finally we carried out the experiment on the epipolar resampling and the result showed the third order polynomial image transformation produced less than 0.7 pixels level of y-parallax.

Developing and Valuating 3D Building Models Based on Multi Sensor Data (LiDAR, Digital Image and Digital Map) (멀티센서 데이터를 이용한 건물의 3차원 모델링 기법 개발 및 평가)

  • Wie, Gwang-Jae;Kim, Eun-Young;Yun, Hong-Sic;Kang, In-Gu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.1
    • /
    • pp.19-30
    • /
    • 2007
  • Modeling 3D buildings is an essential process to revive the real world into a computer. There are two ways to create a 3D building model. The first method is to use the building layer of 1:1000 digital maps based on high density point data gained from airborne laser surveying. The second method is to use LiDAR point data with digital images achieved with LiDAR. In this research we tested one sheet area of 1:1000 digital map with both methods to process a 3D building model. We have developed a process, analyzed quantitatively and evaluated the efficiency, accuracy, and reality. The resulted differed depending on the buildings shape. The first method was effective on simple buildings, and the second method was effective on complicated buildings. Also, we evaluated the accuracy of the produced model. Comparing the 3D building based on LiDAR data and digital image with digital maps, the horizontal accuracy was within ${\pm}50cm$. From the above we derived a conclusion that 3D building modeling is more effective when it is based on LiDAR data and digital maps. Using produced 3D building modeling data, we will be utilized as digital contents in various fields like 3D GIS, U-City, telematics, navigation, virtual reality and games etc.

Simulation and Evaluation of the KOMPSAT/OSMI Radiance Imagery (다목적 실용위성 해색센서 (OSMI)의 복사영상에 대한 모의 및 평가)

  • 반덕로;김용승
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.131-146
    • /
    • 1999
  • The satellite visible data have been successfully applied to study the ocean color. Another ocean color sensor, the Ocean Scanning Multi-spectral Imager (OSMI) on the Korea Multi-Purpose Satellite (KOMPSAT) will be launched in 1999. In order to understand the characteristics of future OSMI images, we have first discussed the simulation models and procedures in detail, and produced typical patterns of radiances at visible bands by using radiative transfer models. The various simulated images of full satellite passes and Korean local areas for different seasons, water types, and the satellite crossing equator time (CET) are presented to illustrate the distribution of each component of radiance (i.e., aerosol scattering, Rayleigh scattering, sun glitter, water-leaving radiance, and total radiance). A method to evaluate the image quality and availability is then developed by using the characteristics of image defined as the Complex Signal Noise Ratio (CSNR). Meanwhile, a series of CSNR images are generated from the simulated radiance components for different cases, which can be used to evaluate the quality and availability of OSMI images before the KOMPSAT will be placed in orbit. Finally, the quality and availability of OSMI images are quantitatively analyzed by the simulated CSNR image. It is hoped that the results would be useful to all scientists who are in charge of OSMI mission and to those who plan to use the data from OSMI.