• Title/Summary/Keyword: Multi-Sensor Image

Search Result 286, Processing Time 0.033 seconds

High speed seam tracking system using vision sensor with multi-line laser (다중 레이저 선을 이용한 비전 센서를 통한 고속 용접선 추적 시스템)

  • 성기은;이세헌
    • Proceedings of the KWS Conference
    • /
    • 2002.05a
    • /
    • pp.49-52
    • /
    • 2002
  • A vision sensor measure range data using laser light source, This sensor generally use patterned laser which shaped single line. But this vision sensor cannot satisfy new trend which needs faster and more precise processing. The sensor's sampling rate increases as reduced image processing time. However, the sampling rate can not over 30fps, because a camera has mechanical sampling limit. If we use multi line laser pattern, we will measure multi range data in one image. In the case of using same sampling rate camera, number of 2D range data profile in one second is directly proportional to laser line's number. For example, the vision sensor using 5 laser lines can sample 150 profiles per second in best condition.

  • PDF

Automatic Matching of Multi-Sensor Images Using Edge Detection Based on Thinning Algorithm (세선화 알고리즘 기반의 에지검출을 이용한 멀티센서 영상의 자동매칭)

  • Shin, Sung-Woong;Kim, Jun-Chul;Oh, Kum-Hui;Lee, Young-Ran
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.407-414
    • /
    • 2008
  • This study introduces an automatic image matching algorithm that can be applied for the scale different image pairs consisting of the satellite pushbroom images and the aerial frame images. The proposed method is based on several image processing techniques such as pre-processing, filtering, edge thinning, interest point extraction, and key-descriptor matching, in order to enhance the matching accuracy and the processing speed. The proposed method utilizes various characteristics, such as the different geometry of image acquisition and the different radiometric characteristics, of the multi-sensor images. In addition, the suggested method uses the sensor model to minimize search area and eliminate false-matching points automatically.

Estimation of the Potato Growth Information Using Multi-Spectral Image Sensor (멀티 스펙트럴 이미지 센서를 이용한 감자의 생육정보 예측)

  • Kang, Tae-Hwann;Noguchi, Noboru
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.180-186
    • /
    • 2011
  • The objective of this research was to establish the estimation method of growth information on potato using Multi-Spectral Image Sensor (MSIS) and Global Positioning System (GPS). And growth estimation map for determining a prescription map over the entire field was generated. To determine the growth model, 10 ground-truth points of areas of $4m^2$ each were selected and investigated. The growth information included stem number, crop height and SPAD value. In addition, images information involving the ground-truth points were also taken by an unmanned helicopter, and reflectance value of Green, Red, and NIR bands were calculated with image processing. Then, growth status of potato was modeled by multi-regression analysis using these reflectance value of Green, Red, and NIR. As a result, potato growth information could be detected by analyzing Green, Red, and NIR images. Stem number, crop height and SPAD value could be estimated with $R^2$ values of 0.600, 0.657 and 0.747 respectively. The generated GIS map would describe variability of the potato growth in a whole field.

A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images (다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구)

  • Kang, Wonbin;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1505-1514
    • /
    • 2022
  • Image matching is a crucial preprocessing step for effective utilization of multi-temporal and multi-sensor very high resolution (VHR) satellite images. Deep learning (DL) method which is attracting widespread interest has proven to be an efficient approach to measure the similarity between image pairs in quick and accurate manner by extracting complex and detailed features from satellite images. However, Image matching of VHR satellite images remains challenging due to limitations of DL models in which the results are depending on the quantity and quality of training dataset, as well as the difficulty of creating training dataset with VHR satellite images. Therefore, this study examines the feasibility of DL-based method in matching pair extraction which is the most time-consuming process during image registration. This paper also aims to analyze factors that affect the accuracy based on the configuration of training dataset, when developing training dataset from existing multi-sensor VHR image database with bias for DL-based image matching. For this purpose, the generated training dataset were composed of correct matching pairs and incorrect matching pairs by assigning true and false labels to image pairs extracted using a grid-based Scale Invariant Feature Transform (SIFT) algorithm for a total of 12 multi-temporal and multi-sensor VHR images. The Siamese convolutional neural network (SCNN), proposed for matching pair extraction on constructed training dataset, proceeds with model learning and measures similarities by passing two images in parallel to the two identical convolutional neural network structures. The results from this study confirm that data acquired from VHR satellite image database can be used as DL training dataset and indicate the potential to improve efficiency of the matching process by appropriate configuration of multi-sensor images. DL-based image matching techniques using multi-sensor VHR satellite images are expected to replace existing manual-based feature extraction methods based on its stable performance, thus further develop into an integrated DL-based image registration framework.

Radiation detector material development with multi-layer by hetero-junction for the reduction of leakage current (헤테르접합을 이용한 누설전류 저감을 위한 다층구조의 방사선 검출 물질 개발)

  • Oh, Kyung-Min;Yoon, Min-Seok;Kim, Min-Woo;Cho, Sung-Ho;Nam, Sang-Hee;Park, Ji-Goon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.11-15
    • /
    • 2009
  • In this study, the basic research verifying possibility of applications as radiology image sensor in Digital Radiography was performed, the radiology image sensor was fabricated using a multi-layer technique to decrease dark current. High efficiency materials in substitution for Amorphous Selenium(a-Se) have been studied as a direct method of imaging detector in Digital Radiography to decrease dark current by using PN junction or Hetero junction already used as solar cell, semiconductor. Particle-In -Binder method is used to fabricate radiology image sensor because it has a lot of advantages such as fabrication convenient, high yield, suitability for large area sensor. But high leakage current is one of main problem in Particle-In -Binder method. To make up for the weak points, multi-layer technique is used, and it is considered that high efficient digital radiation sensor can be fabricated with easy and convenient process. In this study, electrical properties such as leakage current, sensitivity, signal linearity is measured to evaluate multi-layer radiation sensor material.

  • PDF

MEDU-Net+: a novel improved U-Net based on multi-scale encoder-decoder for medical image segmentation

  • Zhenzhen Yang;Xue Sun;Yongpeng, Yang;Xinyi Wu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1706-1725
    • /
    • 2024
  • The unique U-shaped structure of U-Net network makes it achieve good performance in image segmentation. This network is a lightweight network with a small number of parameters for small image segmentation datasets. However, when the medical image to be segmented contains a lot of detailed information, the segmentation results cannot fully meet the actual requirements. In order to achieve higher accuracy of medical image segmentation, a novel improved U-Net network architecture called multi-scale encoder-decoder U-Net+ (MEDU-Net+) is proposed in this paper. We design the GoogLeNet for achieving more information at the encoder of the proposed MEDU-Net+, and present the multi-scale feature extraction for fusing semantic information of different scales in the encoder and decoder. Meanwhile, we also introduce the layer-by-layer skip connection to connect the information of each layer, so that there is no need to encode the last layer and return the information. The proposed MEDU-Net+ divides the unknown depth network into each part of deconvolution layer to replace the direct connection of the encoder and decoder in U-Net. In addition, a new combined loss function is proposed to extract more edge information by combining the advantages of the generalized dice and the focal loss functions. Finally, we validate our proposed MEDU-Net+ MEDU-Net+ and other classic medical image segmentation networks on three medical image datasets. The experimental results show that our proposed MEDU-Net+ has prominent superior performance compared with other medical image segmentation networks.

A Study on Direct Georeferencing by Combined Multi-sensor (다중센서 결합에 의한 외부표정요소 직접결정기법에 관한 연구)

  • Song, Youn-Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.1
    • /
    • pp.88-95
    • /
    • 2005
  • Direct Georeferencing by combined multi-sensor based on the direct measurement of the projection centers and rotation angle of sensor through loading the GPS and INS in aircraft. The method of combined multi-sensor can offer us to acquire the exterior orientation parameters with only minimum GCPs, even the ground control process could be completely skipped. Consequently, It is possible extreme to reduce the time and expense for the mapping process. In this study, a CCD camera is simultaneously used in combined multi-sensor surveying, and acquired CCD image through Direct Georeferencing produce digital orthoimage. In this process, methods of combining sensor and digital orthoimage are examined and estimated. For the comparison of the positioning accuracy digital orthoimage through Direct Georeferencing, GCPs determined by GPS surveying are used. Two digital orthoimage are produced; one with a few GCP and the other without them. The accuracy of orthoimages produced through combined multi-sensor with GCPs meets that of 1:1,000 maps. Without GCPs, it meets that of 1:5,000 maps.

  • PDF

FPGA-Based Real-Time Multi-Scale Infrared Target Detection on Sky Background

  • Kim, Hun-Ki;Jang, Kyung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.31-38
    • /
    • 2016
  • In this paper, we propose multi-scale infrared target detection algorithm with varied filter size using integral image. Filter based target detection is widely used for small target detection, but it doesn't suit for large target detection depending on the filter size. When there are multi-scale targets on the sky background, detection filter with small filter size can not detect the whole shape of the large targe. In contrast, detection filter with large filter size doesn't suit for small target detection, but also it requires a large amount of processing time. The proposed algorithm integrates the filtering results of varied filter size for the detection of small and large targets. The proposed algorithm has good performance for both small and large target detection. Furthermore, the proposed algorithm requires a less processing time, since it use the integral image to make the mean images with different filter sizes for subtraction between the original image and the respective mean image. In addition, we propose the implementation of real-time embedded system using FPGA.

Map-based Variable Rate Application of Nitrogen Using a Multi-Spectral Image Sensor (멀티스펙트랄 이미지 센서를 이용한 전자 지도 기반 변량 질소 살포)

  • Noh, Hyun-Kwon;Zhang, Qin
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • Site-specific N application for corn is one of the precision crop management. To implement the site-specific N application, various nitrogen stress sensing methods, including aerial image, tissue analysis, soil sampling analysis, and SPAD meter readings, have been used. Use of side-dressing, an efficient nitrogen application method than a uniform application in either late fall or early spring, relies mainly on the capability of nitrogen deficiency detection. This paper presents map-based variable rate nitrogen application based using a multi-spectral corn nitrogen deficiency(CND) sensor. This sensor assess the nitrogen stress by means of the estimated SPAD reading calculated from the corn leave reflectance. The estimated SPAD value from the CND sensor system and location information form DGPS of each field block was combined into the field map using a ArcView program. Then this map was converted into a raster file for a map-based variable rate application software. The relative SPAD (RSPAD = SPAD over reference SPAD) was investigated 2 weeks after the treatments. The results showed that the map-based variable rate application system was feasible.

A study on aerial triangulation from multi-sensor imagery

  • Lee, Young-ran;Habib, Ayman;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.400-406
    • /
    • 2002
  • Recently, the enormous increase in the volume of remotely sensed data is being acquired by an ever-growing number of earth observation satellites. The combining of diversely sourced imagery together is an important requirement in many applications such as data fusion, city modeling and object recognition. Aerial triangulation is a procedure to reconstruct object space from imagery. However, since the different kinds of imagery have their own sensor model, characteristics, and resolution, the previous approach in aerial triangulation (or georeferencing) is performed on a sensor model separately. This study evaluated the advantages of aerial triangulation of large number of images from multi-sensors simultaneously. The incorporated multi-sensors are frame, push broom, and whisky broom cameras. The limits and problems of push-broom or whisky broom sensor models can be compensated by combined triangulation with frame imagery and vise versa. The reconstructed object space from multi-sensor triangulation is more accurate than that from a single model. Experiments conducted in this study show the more accurately reconstructed object space from multi-sensor triangulation.

  • PDF