• 제목/요약/키워드: Multi-Scale Structure

검색결과 351건 처리시간 0.027초

A Deep Convolutional Neural Network approach to Large Scale Structure

  • Sabiu, Cristiano G.
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.53.3-53.3
    • /
    • 2019
  • Recent work by Ravanbakhsh et al. (2017), Mathuriya et al. (2018) showed that convolutional neural networks (CNN) can be trained to predict cosmological parameters from the visual shape of the large scale structure, i.e. the filaments, clusters and voids of the cosmic density field. These preliminary works used the dark matter density field at redshift zero. We build upon these works by considering realistic mock galaxy catalogues that mimic true observations. We construct light-cones that span the redshift range appropriate for current and near future cosmological surveys such as LSST, EUCLID, WFIRST etc. In summary, we propose a novel multi-image input CNN to track the evolution in the morphology of large scale structures over cosmic time to constrain cosmology and the expansion history of the Universe.

  • PDF

다중거동 복합형 감쇠장치를 적용한 철골골조의 내진성능실험 (Seismic Performance Test of a Steel Frame with Multi-action Hybrid Dampers)

  • 노지은;허석재;이상현
    • 한국지진공학회논문집
    • /
    • 제23권1호
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effectiveness of a multi-action hybrid damper (MHD) composed of lead rubber bearing (LRB) and friction pad was verified in terms of seismic performance improvement of a frame structure. The LRB and the friction elements are connected in series, so the LRB governs the intial small deformation and the friction determines large deformation behavior. Cyclic loading tests were conducted by using a half scale steel frame structure with the MHD, and the results indicated that the structure became to have the stable trilinear hysteresis with large initial stiffness and first yielding due to the LRB, and the second yielding due to the friction. The MHD could significantly increase the energy dissipation capacity of the structure and the hysteresis curves obtained by tests were almost identical to the analytically estimated ones.

중첩 U-Net 기반 음성 향상을 위한 다중 레벨 Skip Connection (Multi-level Skip Connection for Nested U-Net-based Speech Enhancement)

  • 황서림;변준;허준영;차재빈;박영철
    • 방송공학회논문지
    • /
    • 제27권6호
    • /
    • pp.840-847
    • /
    • 2022
  • 심층 신경망(Deep Neural Network) 기반 음성 향상에서 입력 음성의 글로벌 정보와 로컬 정보를 활용하는 것은 모델의 성능과 밀접한 연관성을 갖는다. 최근에는 다중 스케일을 사용하여 입력 데이터의 글로벌 정보와 로컬 정보를 활용하는 중첩 U-Net 구조가 제안되었으며, 이러한 중첩 U-Net은 음성 향상 분야에도 적용되어 매우 우수한 성능을 보였다. 그러나 중첩 U-Net에서 사용되는 단일 skip connection은 중첩된 구조에 알맞게 변형되어야 할 필요성이 있다. 본 논문은 중첩 U-Net 기반 음성 향상 알고리즘의 성능을 최적화하기 위하여 다중 레벨 skip connection(multi-level skip connection, MLS)을 제안하였다. 실험 결과, 제안된 MLS는 기존의 skip connection과 비교하여 다양한 객관적 평가 지표에서 큰 성능 향상을 보이며 이를 통해 MLS가 중첩 U-Net 기반 음성 향상 알고리즘의 성능을 최적화시킬 수 있음을 확인하였다. 또한, 최종 제안 모델은 다른 심층 신경망 기반 음성 향상 모델과 비교하여서도 매우 우수한 성능을 보인다.

모델기반 시스템공학을 응용한 대형복합기술 시스템 개발 (Application of Model-Based Systems Engineering to Large-Scale Multi-Disciplinary Systems Development)

  • 박중용;박영원
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.689-696
    • /
    • 2001
  • Large-scale Multi-disciplinary Systems(LMS) such as transportation, aerospace, defense etc. are complex systems in which there are many subsystems, interfaces, functions and demanding performance requirements. Because many contractors participate in the development, it is necessary to apply methods of sharing common objectives and communicating design status effectively among all of the stakeholders. The processes and methods of systems engineering which includes system requirement analysis; functional analysis; architecting; system analysis; interface control; and system specification development provide a success-oriented disciplined approach to the project. This paper shows not only the methodology and the results of model-based systems engineering to Automated Guided Transit(AGT) system as one of LMS systems, but also propose the extension of the model-based tool to help manage a project by linking WBS (Work Breakdown Structure), work organization, and PBS (Product Breakdown Structure). In performing the model-based functional analysis, the focus was on the operation concept of an example rail system at the top-level and the propulsion/braking function, a key function of the modern automated rail system. The model-based behavior analysis approach that applies a discrete-event simulation method facilitates the system functional definition and the test and verification activities. The first application of computer-aided tool, RDD-100, in the railway industry demonstrates the capability to model product design knowledge and decisions concerning key issues such as the rationale for architecting the top-level system. The model-based product design knowledge will be essential in integrating the follow-on life-cycle phase activities. production through operation and support, over the life of the AGT system. Additionally, when a new generation train system is required, the reuse of the model-based database can increase the system design productivity and effectiveness significantly.

  • PDF

스케일링을 이용한 다중 스케일 균열 검출 (Multi-scale Crack Detection Using Scaling)

  • 김영로;오태명
    • 전자공학회논문지
    • /
    • 제50권9호
    • /
    • pp.194-200
    • /
    • 2013
  • 본 논문에서는 스케일링을 이용한 다중 스케일 균열 검출 방법을 제안한다. 제안하는 방법은 형태학 알고리즘, 균열 특징, 스케일링을 기반으로 한다. 사용하는 형태학 연산자는 균열의 패턴을 추출한다. 열림과 닫힘의 연산을 이용하여 균열과 배경을 구분한다. 형태학을 기반으로 하는 분할은 작은 간격의 균열을 검출하는 기존의 차분 이용 통합 방법 보다 좋은 성능을 보인다. 그러나, 형태학 방법들은 오직 하나의 구조 연산자를 사용하면 고정된 크기의 균열만을 검출할 수 있다. 따라서 스케일링 방법을 사용한다. 스케일링에 이중선형 보간법을 사용한다. 제안하는 방법은 분할된 영역의 화소 수와 최대 길이와 같은 특징들의 값들을 계산한다. 구분된 영역이 균열에 해당하는 지를 계산한 특징들의 값들에 의하여 결정한다. 실험 결과에서 제안한 다중 스케일 균열 검출 방법이 기존의 검출 방법들보다 향상된 결과를 보인다.

MEDU-Net+: a novel improved U-Net based on multi-scale encoder-decoder for medical image segmentation

  • Zhenzhen Yang;Xue Sun;Yongpeng, Yang;Xinyi Wu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권7호
    • /
    • pp.1706-1725
    • /
    • 2024
  • The unique U-shaped structure of U-Net network makes it achieve good performance in image segmentation. This network is a lightweight network with a small number of parameters for small image segmentation datasets. However, when the medical image to be segmented contains a lot of detailed information, the segmentation results cannot fully meet the actual requirements. In order to achieve higher accuracy of medical image segmentation, a novel improved U-Net network architecture called multi-scale encoder-decoder U-Net+ (MEDU-Net+) is proposed in this paper. We design the GoogLeNet for achieving more information at the encoder of the proposed MEDU-Net+, and present the multi-scale feature extraction for fusing semantic information of different scales in the encoder and decoder. Meanwhile, we also introduce the layer-by-layer skip connection to connect the information of each layer, so that there is no need to encode the last layer and return the information. The proposed MEDU-Net+ divides the unknown depth network into each part of deconvolution layer to replace the direct connection of the encoder and decoder in U-Net. In addition, a new combined loss function is proposed to extract more edge information by combining the advantages of the generalized dice and the focal loss functions. Finally, we validate our proposed MEDU-Net+ MEDU-Net+ and other classic medical image segmentation networks on three medical image datasets. The experimental results show that our proposed MEDU-Net+ has prominent superior performance compared with other medical image segmentation networks.

SURF와 멀티밴드 블렌딩에 기반한 파노라마 스티칭 (Stitcing for Panorama based on SURF and Multi-band Blending)

  • 라연;신성식;박현주;권오봉
    • 한국멀티미디어학회논문지
    • /
    • 제14권2호
    • /
    • pp.201-209
    • /
    • 2011
  • 이 논문은 이미지 매칭 알고리즘의 일종인 수정된 SURF(Speeded Up Robust Feature)와 이미지 블렌딩 알고리즘의 일종인 멀티밴드 블렌딩으로 구성된 파노라마 이미지 스티칭 시스템을 제안한다. 이 논문은 처음에 수정된 SURF를 기술하고 SIFT(Scale Invariant Feature Transform)와 비교하여 SURF를 이 시스템에서 채택한 이유에 대하여 논한다. 그리고 멀티밴드 블렌딩에 대하여 기술하고, 이어서 제안된 파노라마 이미지 스티칭 시스템의 구조에 대하여 설명하고 마지막으로 이미지 질과 처리시간에 대한 평가를 한다. 평가결과는 제안된 시스템이 개별 이미지들을 이음매 없이 연결하였으며, 많은 개개의 이미지 데이터에 대해서도 완전한 파노라마 이미지를 생성하였으며 처리 시간도 SIFT보다 빨랐다.

Soil-structure interaction effect on active control of multi-story buildings under earthquake loads

  • Chen, Genda;Chen, Chaoqiang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.517-532
    • /
    • 2000
  • A direct output feedback control scheme was recently proposed by the authors for single-story building structures resting on flexible soil body. In this paper, the control scheme is extended to mitigate the seismic responses of multi-story buildings. Soil-structure interaction is taken into account in two parts: input at the soil-structure interface/foundation and control algorithm. The former reflects the effect on ground motions and is monitored in real time with accelerometers at foundation. The latter includes the effect on the dynamic characteristics of structures, which is formulated by modifying the classical linear quadratic regulator based on the fundamental mode shape of the soil-structure system. Numerical result on the study of a $\frac{1}{4}$-scale three-story structure, supported by a viscoelastic half-space of soil mass, have demonstrated that the proposed algorithm is robust and very effective in suppressing the earthquake-induced vibration in building structures even supported on a flexible soil mass. Parametric studies are performed to understand how soil damping and flexibility affect the effectiveness of active tendon control. The selection of weighting matrix and effect of soil property uncertainty are investigated in detail for practical applications.

다축 제어용 가진기의 구동소프트웨어 개발 및 보정에 관한 연구 (A Study on Operational Software Development and Calibration of Multi-Axis Vibration Testing Device)

  • 정상화;김재열;류신호
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.143-151
    • /
    • 2001
  • In the recent day, fatigue life prediction techniques play a major role in the design of components in the ground vehicle industry. Full scale durability testing in the laboratory is an essential of any fatigue life evaluation of components or structure of the automotive vehicle. Component testing is particularly important in todey's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, Multi-axis durability testing device is used to carry out the fatigue test. In this paper, The operation software for simultaneously driving Multi-axis vibration testing device is developed and the input and output data are displayed in windows of PC controller with real time. Moteover the characteristics of the displacement and the load of Multi-axis actuators are calibrated separately.

  • PDF

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.