• 제목/요약/키워드: Multi-Scale Structure

검색결과 352건 처리시간 0.029초

인가 전압에 따른 양극산화된 금속 산화물의 나노 구조 변화와 전기변색 응용 (Effects of applied voltages on nano-structures of anodized metal oixdes and their electrochromic applications)

  • 김태호;이재욱;김병성;전형진;나윤채
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.115.1-115.1
    • /
    • 2016
  • Electrochemical anodization has been interested due to its useful way for the nano-scale architecture of metal oxides obtained from a metal substrate. By using this method, it is easy to control the morphology of the oxide materials by controlling electrochemical conditions. Among oxide materials obtained from the transition metals such as Ti, V, W, etc., in this paper, the morphological study of anodized $TiO_2$ was employed at various voltage conditions in fluoric based electrolyte, and the effects of applied voltage (sweep rate and retention time) on the tube morphologies were investigated. Furthermore, by using anodization of tungsten substrate (W), we fabricated the porous structure of $WO_3$ and provided merits of tailored structure for the hybridization of inorganic and organic materials as electrochromic (EC) applications. The hybrid porous $WO_3$ shows multi-chromic properties during the EC reactions at specific voltage conditions. From these results, the anodization process with tailoring nano-structure is one of the promising methods for EC applications.

  • PDF

루우버휜형 열교환기의 유동구조 및 압력강하 특성에 관한 연구 (Study of Flow Structure and Pressure Drop Characteristics in the Louvered-Fin Type Heat Exchanger)

  • 이교승;전창덕;이진호
    • 설비공학논문집
    • /
    • 제6권2호
    • /
    • pp.140-154
    • /
    • 1994
  • Experimental studies were performed to determine the characteristics of flow structure and pressure drop in 15 : 1 scale models of multi-louvered fin heat exchanger in a wide range of variables($L_P/F_P=0.5{\sim}1.23$, ${\theta}=27^{\circ}{\sim}37^{\circ}$, $Re_{LP}=50{\sim}2000$). Flow structure inside the louvered fin was analyzed by smoketube method and new correlations on flow efficiency and drag coefficient were suggested. The new definition for flow efficiency, which modifies the existing flow efficiency, can predict the flow efficiency in the range above mentioned and is represented as a function of Reynolds number, louver pitch to fin pitch ratio, louver angle at low Reynolds number. Drag coefficient which is defined here is a function of Reynolds number, louver pitch to fin pitch ratio, louver angle below critical Reynolds number, and can be represented by a function of louver pitch to fin pitch ratio only above the critical Reynolds number.

  • PDF

서울시 강서구 조성녹지축의 야생조류 서식처 특성 연구 (Characteristics of Wildbirds Habitat of Artificial Green Corridor in Gangseo-gu, Seoul)

  • 최진우;이경재
    • 한국환경과학회지
    • /
    • 제19권1호
    • /
    • pp.47-59
    • /
    • 2010
  • This study was to examine the characteristics of wirdbirds habitat for improvement plan in green corridor. The target site, Gangseo-gu artificial green corridor was set up with the structure in which small scale of core green space with Goongsan and Yeomchang neighborhood parks in urbanized city was connected with the artificial green space with Gongamnaru, Hwanggeumnae neighborhood parks with 28~42.5 m in width. Wild birds six~eleven species; Dendrocopos spp, Paradoxornis webbiana, Parus major, Phasianus colchicus, etc. were observed in core green, but wild birds of two~five species: Columba livuia, Passer montanus, Pica pica, Hypsipetes amaurotis, etc. were observed in artificial green space. Thus wild birds of artificial and generalist species only moved in artificial green space. The artificial green space where vegetation structure was consisted of single-layer with poorness chose target species laying stress on generalist species and edge species of Parus major, P. palustris, Paradoxornis webbiana etc. for short-term and interior species of Dendrocopos major, Picus canus, etc. for long-term. The result suggested enhancement methods for target species's habitat in green corridor: to secure at least a corridor 30 meters in artificial corridor, to secure ecological pond, to offer the various shelterer and environment of prey-resources through the multi-layer structure.

장수명 공동주택용 보-기둥 접합부 시공방법 개발 (Development of Beam-Column Connection for The New Apartment Structural System)

  • 윤태호;홍원기;김선국;박선치;윤대영
    • KIEAE Journal
    • /
    • 제10권6호
    • /
    • pp.145-151
    • /
    • 2010
  • Bearing wall system was used extensively in most multi-residential apartment buildings in Korea. However, bearing wall apartments have the lack of architectural plan flexibility, remodelling-incompatible, causing serious economic losses in terms of construction waste. Recently, many researchers have studied the use of Rahmen structure as a potential alternative. The beam-column connection in the paper for long-life apartment housing forms connection of a Rahmen structure utilizing the advantages of steel and reinforced concrete. In addition, reduction of cast-in place concrete and construction schedule is expected by using precast concrete. Reduction effect of quantity decreased construction costs and $CO_2$ emission of key construction materials. However, verifying the feasibility of new construction method entails numerous challenges. Accordingly, the purpose of this study is to analyze the construction feasibility of sleeve, coupler, and pressure welding connections for long-life apartment building structure. A 3D modeling software was used to perform the analysis, and a real scale model was created to verify the results of construction feasibility. By verifying the construction feasibility of beam-column connections, this study will contribute to the efficient application of these methods on construction sites.

UGC 모델링에 관한 연구(I) (A Study on Modeling of Unmanned Gantry Crane (1))

  • 박경택;김두형;신영재;박찬훈;김용선
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1999년도 추계학술대회논문집
    • /
    • pp.333-344
    • /
    • 1999
  • Currently many studies on the unmanned gantry crane for the automated container terminal are accomplished. This is needed for the development of large scale, automation, high speed, unmanned system and information system in port facility. In order to do efficient container handling job in port yard, the automated handling system is well adapted to the job environments and all-season weather, In order to realize the automatic and unmanned system for container handling job, the required functions and main structure system are studied. The major problems of operation of the conventional gantry crane are that the vibration of gantry structure body is occurred by operation and that high-speed and precision position-velocity control and the capability to dope to the external disturbances caused by the wind, rain, fog and job environments. In this paper, the fundamental study for establishment of the concept and the dynamic modelling of the major sub system of the unmanned gantry crane is presented. These studies are useful for design and manufacturing of the new concept model of the unmanned gantry crane for efficient operation of the automated container terminal.

  • PDF

Intelligent cooling control for mass concrete relating to spiral case structure

  • Ning, Zeyu;Lin, Peng;Ouyang, Jianshu;Yang, Zongli;He, Mingwu;Ma, Fangping
    • Advances in concrete construction
    • /
    • 제14권1호
    • /
    • pp.57-70
    • /
    • 2022
  • The spiral case concrete (SCC) used in the underground powerhouse of large hydropower stations is complex, difficult to pour, and has high requirements for temperature control and crack prevention. In this study, based on the closed-loop control theory of "multi-source sensing, real analysis, and intelligent control", a new intelligent cooling control system (ICCS) suitable for the SCC is developed and is further applied to the Wudongde large-scale underground powerhouse. By employing the site monitoring data, numerical simulation, and field investigation, the temperature control quality of the SCC is evaluated. The results show that the target temperature control curve can be accurately tracked, and the temperature control indicators such as the maximum temperature can meet the design requirements by adopting the ICCS. Moreover, the numerical results and site investigation indicate that a safety factor of the spiral case structure was sure, and no cracking was found in the concrete blocks, by which the effectiveness of the system for improving the quality of temperature control of the SCC is verified. Finally, an intelligent cooling control procedure suitable for the SCC is proposed, which can provide a reference for improving the design and construction level for similar projects.

Fabrication of Hierarchical Nanostructures Using Vacuum Cluster System

  • Lee, Jun-Young;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.389-390
    • /
    • 2012
  • In this study, we fabricate a superhydrophobic surface made of hierarchical nanostructures that combine wax crystalline structure with moth-eye structure using vacuum cluster system and measure their hydrophobicity and durability. Since the lotus effect was found, much work has been done on studying self-cleaning surface for decades. The surface of lotus leaf consists of multi-level layers of micro scale papillose epidermal cells and epicuticular wax crystalloids [1]. This hierarchical structure has superhydrophobic property because the sufficiently rough surface allows air pockets to form easily below the liquid, the so-called Cassie state, so that the relatively small area of water/solid interface makes the energetic cost associated with corresponding water/air interfaces smaller than the energy gained [2]. Various nanostructures have been reported for fabricating the self-cleaning surface but in general, they have the problem of low durability. More than two nanostructures on a surface can be integrated together to increase hydrophobicity and durability of the surface as in the lotus leaf [3,5]. As one of the bio-inspired nanostructures, we introduce a hierarchical nanostructure fabricated with a high vacuum cluster system. A hierarchical nanostructure is a combination of moth-eye structure with an average pitch of 300 nm and height of 700 nm, and the wax crystalline structure with an average width and height of 200 nm. The moth-eye structure is fabricated with deep reactive ion etching (DRIE) process. $SiO_2$ layer is initially deposited on a glass substrate using PECVD in the cluster system. Then, Au seed layer is deposited for a few second using DC sputtering process to provide stochastic mask for etching the underlying $SiO_2$ layer with ICP-RIE so that moth-eye structure can be fabricated. Additionally, n-hexatriacontane paraffin wax ($C_{36}H_{74}$) is deposited on the moth-eye structure in a thermal evaporator and self-recrystallized at $40^{\circ}C$ for 4h [4]. All of steps are conducted utilizing vacuum cluster system to minimize the contamination. The water contact angles are measured by tensiometer. The morphology of the surface is characterized using SEM and AFM and the reflectance is measured by spectrophotometer.

  • PDF

가새 설치에 따른 벤로형 지붕 연동온실의 구조성능 평가 (Structural Performance Evaluation of a Multi-span Greenhouse with Venlo-type Roof According to Bracing Installation)

  • 신현호;최만권;조명환;김진현;서태철;이충근;김승유
    • 생물환경조절학회지
    • /
    • 제31권4호
    • /
    • pp.438-443
    • /
    • 2022
  • 본 연구에서는 실대형 실험과 구조해석을 통해서 현장에서 사용되는 가새 시스템을 적용한 강관 골조 플라스틱 연동온실의 횡하중 가력시험을 수행하고 성능을 분석하였다. 횡강성과 응력을 분석하기 위해 실험체에 변위와 변형률계를 각각 9개소 및 16개소 설치하였으며 가새의 설치 유무에 따른 성능을 비교하기 위해 구조해석을 수행하였다. 실대형 실험과 가새의 설치 유무에 따른 구조해석 결과 비교에서 구조물의 횡강성이 많은 차이를 보였다. 실험체의 측고 부근에서 측정한 횡강성은 가새 시스템을 설치함으로 강성을 최대 44%까지 증가시켰다. 현장에서 사용하는 가새의 접합부가 충분한 강성을 확보하지 못함으로써 외력을 전체 구조물에 적절히 전달하지 못하여 횡강성이 구조해석 결과보다 많이 저하되는 현상이 나타났다. 따라서 온실 설계 시 구조성능의 신뢰성을 높이기 위해서 가새 시스템의 연결방법, 설치위치, 부재의 최대길이 등 온실의 접합부에 대한 명확한 시공방법과 설계기준이 정립되어 온실 설계가 이루어져야 할 것으로 판단된다.

대형 진동대 실험을 이용한 다자유도 구조물의 관성 상호작용 평가 (Evaluation of Inertial Interaction of a Multi-degree-of-freedom Structure during a Large-scale 1-g Shaking Table Test)

  • 채종훈;윤형철;정종원
    • 한국지반공학회논문집
    • /
    • 제38권6호
    • /
    • pp.17-28
    • /
    • 2022
  • 동적 하중 재하시 지반-구조물 상호작용 확인을 위해 진동대 실험이 많이 시행됐으나, 대부분 단자유도 상부 구조물과 단말뚝을 적용한 진동대 실험이 주를 이루고 있다. 이에 본 연구에서는 다자유도 구조물과 군말뚝을 적용한 대형진동대 실험을 통해, 상부 구조물의 관성 상호작용 영향을 분석하였다. 실험 결과, 단일 진동수에서의 증폭 경향을 나타내는 단자유도 구조물과는 다르게 다자유도 구조물에서는 다수의 진동수 구간에서 시간-가속도 발생 경향 및 응답 주파수의 유사성과 증폭 경향이 나타났다. 또한, 벽체 구조물에 비하여 기둥 구조물에서의 기초판과 상부 구조물과의 증폭현상이 더 크게 발생하여 기둥 구조물에 의한 관성 상호작용 효과가 더 큰 것으로 판단된다. 그리고 기초판에서의 전단력 및 관성력 관계, 상대 수직 변위 및 상대 수평 변위 관계와 심도별 동적 p-y 곡선에 대한 분석을 수행하였다. 분석 결과, 다자유도 구조물에서는 단자유도 구조물과는 상이한 거동을 나타내고 있으며, 벽체보다 기둥 구조물의 관성 상호작용의 효과가 더 큰 것으로 나타났다.

효율적인 비정형 도로영역 인식을 위한 Semantic segmentation 기반 심층 신경망 구조 (Efficient Deep Neural Network Architecture based on Semantic Segmentation for Paved Road Detection)

  • 박세진;한정훈;문영식
    • 한국정보통신학회논문지
    • /
    • 제24권11호
    • /
    • pp.1437-1444
    • /
    • 2020
  • 컴퓨터 비전 시스템의 발달로 보안, 생체인식, 의료영상, 자율주행 등의 분야에 많은 발전이 있었다. 자율주행 분야에서는 특히 딥러닝을 이용한 객체인식, 탐지 기법이 주로 사용되는데, 자동차가 갈 수 있는 영역을 판단하기 위한 도로영역 인식이 특히 중요한 문제이다. 도로 영역은 일반적인 객체탐지에서 활용되는 사각영역인식과는 달리 비정형적인 형태를 띠므로, ROI 기반의 객체인식 구조는 적용할 수 없다. 본 논문에서는 Semantic segmentation 기법을 사용한 비정형적인 도로영역 인식에 맞는 심층 신경망 구조를 제안한다. 또한 도로영역에 특화된 네트워크 구조인 Multi-scale semantic segmentation 기법을 사용하여 성능이 개선됨을 입증하였다.