• Title/Summary/Keyword: Multi-Resolution Image

Search Result 560, Processing Time 0.025 seconds

Semi-Automated Extraction of Geographic Information using KOMPSAT 2 : Analyzing Image Fusion Methods and Geographic Objected-Based Image Analysis (다목적 실용위성 2호 고해상도 영상을 이용한 지리 정보 추출 기법 - 영상융합과 지리객체 기반 분석을 중심으로 -)

  • Yang, Byung-Yun;Hwang, Chul-Sue
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.2
    • /
    • pp.282-296
    • /
    • 2012
  • This study compared effects of spatial resolution ratio in image fusion by Korea Multi-Purpose SATellite 2 (KOMPSAT II), also known as Arirang-2. Image fusion techniques, also called pansharpening, are required to obtain color imagery with high spatial resolution imagery using panchromatic and multi-spectral images. The higher quality satellite images generated by an image fusion technique enable interpreters to produce better application results. Thus, image fusions categorized in 3 domains were applied to find out significantly improved fused images using KOMPSAT 2. In addition, all fused images were evaluated to satisfy both spectral and spatial quality to investigate an optimum fused image. Additionally, this research compared Pixel-Based Image Analysis (PBIA) with the GEOgraphic Object-Based Image Analysis (GEOBIA) to make better classification results. Specifically, a roof top of building was extracted by both image analysis approaches and was finally evaluated to obtain the best accurate result. This research, therefore, provides the effective use for very high resolution satellite imagery with image interpreter to be used for many applications such as coastal area, urban and regional planning.

  • PDF

Multi-Range Approach of Stereo Vision for Mobile Robot Navigation in Uncertain Environments

  • Park, Kwang-Ho;Kim, Hyung-O;Baek, Moon-Yeol;Kee, Chang-Doo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1411-1422
    • /
    • 2003
  • The detection of free spaces between obstacles in a scene is a prerequisite for navigation of a mobile robot. Especially for stereo vision-based navigation, the problem of correspondence between two images is well known to be of crucial importance. This paper describes multi-range approach of area-based stereo matching for grid mapping and visual navigation in uncertain environment. Camera calibration parameters are optimized by evolutionary algorithm for successful stereo matching. To obtain reliable disparity information from both images, stereo images are to be decomposed into three pairs of images with different resolution based on measurement of disparities. The advantage of multi-range approach is that we can get more reliable disparity in each defined range because disparities from high resolution image are used for farther object a while disparities from low resolution images are used for close objects. The reliable disparity map is combined through post-processing for rejecting incorrect disparity information from each disparity map. The real distance from a disparity image is converted into an occupancy grid representation of a mobile robot. We have investigated the possibility of multi-range approach for the detection of obstacles and visual mapping through various experiments.

High Resolution Satellite Image Segmentation Algorithm Development Using Seed-based region growing (시드 기반 영역확장기법을 이용한 고해상도 위성영상 분할기법 개발)

  • Byun, Young-Gi;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.421-430
    • /
    • 2010
  • Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Improved Seeded Region Growing (ISRG) and Region merging. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained multi-spectral edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying ISRG to consider spectral and edge information. Finally the region merging process, integrating region texture and spectral information, was carried out to get the final segmentation result. The accuracy assesment was done using the unsupervised objective evaluation method for evaluating the effectiveness of the proposed method. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

A Single Image Defogging Algorithm Based on Multi-Resolution Method Using Histogram Information and Dark Channel Prior (히스토그램 정보와 dark channel prior를 이용한 다해상도 기반 단일 영상 안개 제거 알고리즘)

  • Yang, Seung-Yong;Yang, Jeong-Eun;Hong, Seok-Keun;Cho, Seok-Je
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.649-655
    • /
    • 2015
  • In this paper, we propose a defogging algorithm for a single image. Dark channel prior (DCP), which is a well-known defogging algorithm, can cause halo artifacts on boundary regions, low-contrast defogging images, and requires a large computational time. To solve these problems, we use histogram information with DCP on transmission estimation regions and a multi-resolution method. Local histogram information can reduce the low-contrast problem on a defogging image, and the multi-resolution method with edge information can reduce the total computational time and halo artifacts. We validate the proposed method by performing experiments on fog images, and we confirm that the proposed algorithm is more efficient and superior than conventional algorithms.

Automatic Estimation of Geometric Translations Between High-resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 자동 변위량 추정)

  • Han, You Kyung;Byun, Young Gi;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • Using multi-sensor or multi-temporal high resolution satellite images together is essential for efficient applications in remote sensing area. The purpose of this paper is to estimate geometric difference of translations between high-resolution optical and SAR images automatically. The geometric and radiometric pre-processing steps were fulfilled to calculate the similarity between optical and SAR images by using Mutual Information method. The coarsest-level pyramid images of each sensor constructed by gaussian pyramid method were generated to estimate the initial translation difference of the x, y directions for calculation efficiency. The precise geometric difference of translations was able to be estimated by applying this method from coarsest-level pyramid image to original image in order. Yet even when considered only translation between optical and SAR images, the proposed method showed RMSE lower than 5m in all study sites.

The study of environmental monitoring by science airship and high accuracy digital multi-spectral camera

  • Choi, Chul-Uong;Kim, Young-Seop;Nam, Kwang-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.750-750
    • /
    • 2002
  • The Airship PKNU is a roughly 12 m (32 ft) long blimp, filled with helium, whose two-gasoline power(3hp per engine) are independently radio controlled. The motors and propellers can be tilted and are attached to the gondola through an axle and supporting braces. Four stabilizing fins are mounted at the tail of the airship. To fill in the helium, a valve is placed at the bottom of the hull. The inaugural flight was on jul. 31.2002 at the Pusan, S.korea Most environment monitoring system\ problem use satellite image. But, Low resolution satellite image (multi-spectral) : 1km ∼ 250 m ground resolutions is lows. So, detail information acquisition is hard at the complex terrain. High resolution satellite image (black and white) 30m : The ground resolution is high. But it is high price, visit cycle and delivery time is long So. We want make high accuracy airship photogrammetry system. This airship can catch picture Multi. spectral Aerial photographing (visible, Near infrared and thermal infrared), and High resolution (over 6million pixel). It can take atmosphere datum (Temperature (wet bulb, dew point, general), Pressure (static, dynamic), Humidity, wind speed). this airship is very Quickness that aircraft install time is lower than 30 minutes, it is compact and that conveyance is easy. High-capacity save image (628 cut per 1time (over 6million and 4band(R,G,B,NIR)) and this airship can save datum this High accuracy navigatin (position and rotate angle) by DGPS tech. and Gyro system. this airship will do monitor about red-tide, sea surface temperate, and CH-A, SS and etc.

  • PDF

Implementation of Adaptive Shading Correction System Supporting Multi-Resolution for Camera

  • Ha, Joo-Young;Song, Jin-Geun;Im, Jeong-Uk;Min, Kyoung-Joong;Kang, Bong-Soon
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2006.06a
    • /
    • pp.25-28
    • /
    • 2006
  • In this paper, we say the shading correction system supporting multi-resolution for camera. The shading effect is caused by non-uniform illumination, non-uniform camera sensitivity, or even dirt and dust on glass (lens) surfaces. In general this shading effect is undesirable [1]. Eliminating it is frequently necessary for subsequent processing and especially when quantitative microscopy is the fine goal. The proposed system is available on thirty nine kinds of image resolutions scanned by interlaced and progressive type. Moreover, the system is using various continuous quadratic equations instead of using the piece-wise linear curve which is composed of multiple line segments. Finally, the system could correct the correct effect without discontinuity in any image resolution. The proposed system is also experimentally demonstrated with Xilinx Virtex FPGA XCV2000E- 6BG5560 and the TV set.

  • PDF

Electrical Impedance Tomography and Biomedical Applications

  • Woo, Eung-Je
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.1-6
    • /
    • 2007
  • Two impedance imaging systems of multi-frequency electrical impedance tomography (MFEIT) and magnetic resonance electrical impedance tomography (MREIT) are described. MFEIT utilizes boundary measurements of current-voltage data at multiple frequencies to reconstruct cross-sectional images of a complex conductivity distribution (${\sigma}+i{\omega}{\varepsilon}$) inside the human body. The inverse problem in MFEIT is ill-posed due to the nonlinearity and low sensitivity between the boundary measurement and the complex conductivity. In MFEIT, we therefore focus on time- and frequency-difference imaging with a low spatial resolution and high temporal resolution. Multi-frequency time- and frequency-difference images in the frequency range of 10 Hz to 500 kHz are presented. In MREIT, we use an MRI scanner to measure an internal distribution of induced magnetic flux density subject to an injection current. This internal information enables us to reconstruct cross-sectional images of an internal conductivity distribution with a high spatial resolution. Conductivity image of a postmortem canine brain is presented and it shows a clear contrast between gray and white matters. Clinical applications for imaging the brain, breast, thorax, abdomen, and others are briefly discussed.

  • PDF

Analysis of Shadow Effect on High Resolution Satellite Image Matching in Urban Area (도심지역의 고해상도 위성영상 정합에 대한 그림자 영향 분석)

  • Yeom, Jun Ho;Han, You Kyung;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Multi-temporal high resolution satellite images are essential data for efficient city analysis and monitoring. Yet even when acquired from the same location, identical sensors as well as different sensors, these multi-temporal images have a geometric inconsistency. Matching points between images, therefore, must be extracted to match the images. With images of an urban area, however, it is difficult to extract matching points accurately because buildings, trees, bridges, and other artificial objects cause shadows over a wide area, which have different intensities and directions in multi-temporal images. In this study, we analyze a shadow effect on image matching of high resolution satellite images in urban area using Scale-Invariant Feature Transform(SIFT), the representative matching points extraction method, and automatic shadow extraction method. The shadow segments are extracted using spatial and spectral attributes derived from the image segmentation. Also, we consider information of shadow adjacency with the building edge buffer. SIFT matching points extracted from shadow segments are eliminated from matching point pairs and then image matching is performed. Finally, we evaluate the quality of matching points and image matching results, visually and quantitatively, for the analysis of shadow effect on image matching of high resolution satellite image.

Jointly Learning of Heavy Rain Removal and Super-Resolution in Single Images

  • Vu, Dac Tung;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.113-117
    • /
    • 2020
  • Images were taken under various weather such as rain, haze, snow often show low visibility, which can dramatically decrease accuracy of some tasks in computer vision: object detection, segmentation. Besides, previous work to enhance image usually downsample the image to receive consistency features but have not yet good upsample algorithm to recover original size. So, in this research, we jointly implement removal streak in heavy rain image and super resolution using a deep network. We put forth a 2-stage network: a multi-model network followed by a refinement network. The first stage using rain formula in the single image and two operation layers (addition, multiplication) removes rain streak and noise to get clean image in low resolution. The second stage uses refinement network to recover damaged background information as well as upsample, and receive high resolution image. Our method improves visual quality image, gains accuracy in human action recognition task in datasets. Extensive experiments show that our network outperforms the state of the art (SoTA) methods.

  • PDF