• Title/Summary/Keyword: Multi-Points Method

Search Result 460, Processing Time 0.026 seconds

Stereo Matching Method using Directional Feature Vector (방향성 특징벡터를 이용한 스테레오 정합 기법)

  • Moon, Chang-Gi;Jeon, Jong-Hyun;Ye, Chul-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.52-57
    • /
    • 2007
  • In this paper we proposed multi-directional matching windows combined by multi-dimensional feature vector matching, which uses not only intensity values but also multiple feature values, such as variance, first and second derivative of pixels. Multi-dimensional feature vector matching has the advantage of compensating the drawbacks of area-based stereo matching using one feature value, such as intensity. We define matching cost of a pixel by the minimum value among eight multi-dimensional feature vector distances of the pixels expanded in eight directions having the interval of 45 degrees. As best stereo matches, we determine the two points with the minimum matching cost within the disparity range. In the experiment we used aerial imagery and IKONOS satellite imagery and obtained more accurate matching results than that of conventional matching method.

Image Processing Algorithms for DI-method Multi Touch Screen Controllers (DI 방식의 대형 멀티터치스크린을 위한 영상처리 알고리즘 설계)

  • Kang, Min-Gu;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.1-12
    • /
    • 2011
  • Large-sized multi-touch screen is usually made using infrared rays. That is because it has technical constraints or cost problems to make the screen with the other ways using such as existing resistive overlays, capacitive overlay, or acoustic wave. Using infrared rays to make multi-touch screen is easy, but is likely to have technical limits to be implemented. To make up for these technical problems, two other methods were suggested through Surface project, which is a next generation user-interface concept of Microsoft. One is Frustrated Total Internal Reflection (FTIR) which uses infrared cameras, the other is Diffuse Illumination (DI). FTIR and DI are easy to be implemented in large screens and are not influenced by the number of touch points. Although FTIR method has an advantage in detecting touch-points, it also has lots of disadvantages such as screen size limit, quality of the materials, the module for infrared LED arrays, and high consuming power. On the other hand, DI method has difficulty in detecting touch-points because of it's structural problems but makes it possible to solve the problem of FTIR. In this thesis, we study the algorithms for effectively correcting the distort phenomenon of optical lens, and image processing algorithms in order to solve the touch detecting problem of the original DI method. Moreover, we suggest calibration algorithms for improving the accuracy of multi-touch, and a new tracking technique for accurate movement and gesture of the touch device. To verify our approaches, we implemented a table-based multi touch screen.

Analysis on Stable Grasping based on Three-dimensional Acceleration Convex Polytope for Multi-fingered Robot (3차원 Acceleration Convex Polytope를 기반으로 한 로봇 손의 안정한 파지 분석)

  • Jang, Myeong-Eon;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-104
    • /
    • 2009
  • This article describes the analysis of stable grasping for multi-fingered robot. An analysis method of stable grasping, which is based on the three-dimensional acceleration convex polytope, is proposed. This method is derived from combining dynamic equations governing object motion and robot motion, force relationship and acceleration relationship between robot fingers and object's gravity center through contact condition, and constraint equations for satisfying no-slip conditions at every contact points. After mapping no-slip condition to torque space, we derived intersected region of given torque bounds and the mapped region in torque space so that the intersected region in torque space guarantees no excessive torque as well as no-slip at the contact points. The intersected region in torque space is mapped to an acceleration convex polytope corresponding to the maximum acceleration boundaries which can be exerted by the robot fingers under the given individual bounds of each joints torque and without causing slip at the contacts. As will be shown through the analysis and examples, the stable grasping depends on the joint driving torque limits, the posture and the mass of robot fingers, the configuration and the mass of an object, the grasp position, the friction coefficients between the object surface and finger end-effectors.

A novel 3D BE formulation for general multi-zone domains under body force loading

  • Ghiasian, Mohammad;Ahmadi, Mohammad Taghi
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.775-789
    • /
    • 2013
  • The current paper proposes a boundary element formulation, applicable to 2-D and 3-D elastostatics problems using a unified approach for transformations of the domain integrals into boundary integrals. The method is applicable to linear problems encompassing both finite and infinite multi-region domains allowing non-vanishing body forces. Numerical results agree quite well with the analytical solutions; while the present method offers easy formulation with less numerical efforts in comparison to FEM or some BEM which need interior points to treat arbitrary body forces. It is demonstrated that the method has the potential to have profound impact on engineering design, notably in dam-foundation interaction.

Performance Evaluations of a Residential Small Multi-Refrigeration System Considering the Adiabatic Characteristics (단열 특성을 고려한 가정용 소형 멀티 냉동시스템의 성능에 관한 연구)

  • Lee, Moo-Yeon;Lee, Dong-Yeon;Joo, Young-Ju;Kim, Sang-Uk;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.868-875
    • /
    • 2007
  • In this paper, performance characteristics of a domestic kim-chi refrigerator are predicted by using the theoretical calculation and experimental method. The objective of this study is to find out the best design points of the refrigeration system and to calculate an adiabatic characteristic with variation to outdoor temperatures. The best design points such as refrigerant charge amount and capillary length were experimentally investigated. And the theoretical calculation is conducted as a function of calculation parameters and outdoor temperatures. According to this study results, the best design points of a refrigeration system with 2 rooms are 95 g of a refrigerant charge amount and 3500 / 3500 mm of capillary lengths and the best design points of a refrigeration system with 3 rooms are 100 g of a refrigerant charge amount and 3000/3000/6000mm of capillary lengths. And the power consumptions of both systems are 13.57 and 18.2 kWh/month. The worst part of heat loss is a front side of a domestic kim-chi refrigerator body.

A study on estimating the interlayer boundary of the subsurface using a artificial neural network with electrical impedance tomography

  • Sharma, Sunam Kumar;Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.650-663
    • /
    • 2021
  • Subsurface topology estimation is an important factor in the geophysical survey. Electrical impedance tomography is one of the popular methods used for subsurface imaging. The EIT inverse problem is highly nonlinear and ill-posed; therefore, reconstructed conductivity distribution suffers from low spatial resolution. The subsurface region can be approximated as piece-wise separate regions with constant conductivity in each region; therefore, the conductivity estimation problem is transformed to estimate the shape and location of the layer boundary interface. Each layer interface boundary is treated as an open boundary that is described using front points. The subsurface domain contains multi-layers with very complex configurations, and, in such situations, conventional methods such as the modified Newton Raphson method fail to provide the desired solution. Therefore, in this work, we have implemented a 7-layer artificial neural network (ANN) as an inverse problem algorithm to estimate the front points that describe the multi-layer interface boundaries. An ANN model consisting of input, output, and five fully connected hidden layers are trained for interlayer boundary reconstruction using training data that consists of pairs of voltage measurements of the subsurface domain with three-layer configuration and the corresponding front points of interface boundaries. The results from the proposed ANN model are compared with the gravitational search algorithm (GSA) for interlayer boundary estimation, and the results show that ANN is successful in estimating the layer boundaries with good accuracy.

Automatic Co-registration of Cloud-covered High-resolution Multi-temporal Imagery (구름이 포함된 고해상도 다시기 위성영상의 자동 상호등록)

  • Han, You Kyung;Kim, Yong Il;Lee, Won Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.101-107
    • /
    • 2013
  • Generally the commercial high-resolution images have their coordinates, but the locations are locally different according to the pose of sensors at the acquisition time and relief displacement of terrain. Therefore, a process of image co-registration has to be applied to use the multi-temporal images together. However, co-registration is interrupted especially when images include the cloud-covered regions because of the difficulties of extracting matching points and lots of false-matched points. This paper proposes an automatic co-registration method for the cloud-covered high-resolution images. A scale-invariant feature transform (SIFT), which is one of the representative feature-based matching method, is used, and only features of the target (cloud-covered) images within a circular buffer from each feature of reference image are used for the candidate of the matching process. Study sites composed of multi-temporal KOMPSAT-2 images including cloud-covered regions were employed to apply the proposed algorithm. The result showed that the proposed method presented a higher correct-match rate than original SIFT method and acceptable registration accuracies in all sites.

Color decomposition method for multi-primary display using 3D-LUT in linearized LAB space (멀티프라이머리 디스플레이를 위한 3D-LUT 색 신호 분리 방법)

  • Kang Dong-Woo;Cho Yang-Ho;Kim Yun-Tae;Choe Won-Hee;Ha Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.9-18
    • /
    • 2005
  • This paper proposes the color decomposition method for multi-primary display (MPD) using a 3-dimensional look-up-table (3D-LUT) in a linearized LAB space. The proposed method decomposes conventional three-primary colors into the multi-primary control values of a display device under constraints of tristimulus match. To reproduce images on the MPD, the color signals should be estimated from a device-independent color space, such as CIEXYZ and CIELAB. In this paper, the linearized LAB space is used due to its linearity and additivity in color conversion. The proposed method constructs the 3-D LUT, which contain gamut boundary information to calculate color signals of the MPD. For the image reproduction, standard RGB or CIEXYZ is transformed to the linearized LAB and then hue and chroma are computed to refer to the 3D-LUT. In the linearlized LAB space, the color signals of a gamut boundary point with the same lightness and hue of an input point are calculated. Also, color signals of a point on gray axis are calculated with the same lightness of an input. With gamut boundary points and input point, color signals of the input points are obtained with the chroma ratio divided by the chroma of the gamut boundary point. Specially, for the hue change, neighboring boundary points are employed. As a result the proposed method guarantees the continuity of color signals and computational efficiency, and requires less amount of memory.

Multi-Objective Optimization Using Kriging Model and Data Mining

  • Jeong, Shin-Kyu;Obayashi, Shigeru
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • In this study, a surrogate model is applied to multi-objective aerodynamic optimization design. For the balanced exploration and exploitation, each objective function is converted into the Expected Improvement (EI) and this value is used as fitness value in the multi-objective optimization instead of the objective function itself. Among the non-dominated solutions about EIs, additional sample points for the update of the Kriging model are selected. The present method was applied to a transonic airfoil design. Design results showed the validity of the present method. In order to obtain the information about design space, two data mining techniques are applied to design results: Analysis of Variance (ANOVA) and the Self-Organizing Map (SOM).

A Multi-Stage 75 K Fuzzy Modeling Method by Genetic Programming

  • Li Bo;Cho Kyu-Kab
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.877-884
    • /
    • 2002
  • This paper deals with a multi-stage TSK fuzzy modeling method by using Genetic Programming (GP). Based on the time sequence of sampling data the best structural change points of complex systems are detemined by using GP, and also the moving window is simultaneously introduced to overcome the excessive amount of calculation during the generating procedure of GP tree. Therefore, a multi-stage TSK fuzzy model that attempts to represent a complex problem by decomposing it into multi-stage sub-problems is addressed and its learning algorithm is proposed based on the Radial Basis Function (RBF) network. This approach allows us to determine the model structure and parameters by stages so that the problems ran be simplified.

  • PDF