• 제목/요약/키워드: Multi-Phase Flow

검색결과 299건 처리시간 0.022초

다상유체해석을 통한 기포결함 예측과 금형설계기술 (Study for Permanent Mold Design Technology and Porosity Defect Prediction Method by Multi-Phase Flow Numerical Simulations)

  • 최영심;조인성;황호영;최정길;홍준호
    • 소성∙가공
    • /
    • 제14권3호
    • /
    • pp.224-232
    • /
    • 2005
  • The high-pressure die-casting is one of the most effective methods to produce a large amount of products in short cycle time. This process, however, has a problem that the gas porosity defect appears easily. The generation of gas porosity is known mainly due to the air entrapment during the injection stage. Most of numerical simulations for the molten metal flow pattern observations have done in the treating of one phase fluid flow but the gas-liquid interface is essentially multi- phase phenomenon. In this paper, the two-phase fluid flow numerical simulation methods have been adapted to predict the gas porosity generations in the molten metal. The accuracy and the usefulness of the new simulation module have been emphasized and verified through some comparison experiments.

CFD Simulation of Multiphase Flow by Mud Agitator in Drilling Mud Mixing System

  • Kim, Tae-Young;Jeon, Gyu-Mok;Park, Jong-Chun
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.121-130
    • /
    • 2021
  • In this study, a computational fluid dynamics (CFD) simulation based on an Eulerian-Eulerian approach was used to evaluate the mixing performance of a mud agitator through the distribution of bulk particles. Firstly, the commercial CFD software Star-CCM+ was verified by performing numerical simulations of single-phase water mixing problems in an agitator with various turbulence models, and the simulation results were compared with an experiment. The standard model was selected as an appropriate turbulence model, and a grid convergence test was performed. Then, a simulation of the liquid-solid multi-phase mixing in an agitator was simulated with different multi-phase interaction models, and lift and drag models were selected. In the case of the lift model, the results were not significantly affected, but Syamlal and O'Brien's drag model showed more reasonable results with respect to the experiment. Finally, with the properly determined simulation conditions, a multi-phase flow simulation of a mud agitator was performed to predict the mixing time and spatial distribution of solid particles. The applicability of the CFD multi-phase simulation for the practical design of a mud agitator was confirmed.

발전소 계통해석을 위한 MARS 코드의 다차원 이상 난류 유동 모델 검증계산 (Assessment of MARS Multi-dimensional Two-phase Turbulent Flow Models for the Nuclear System Analysis)

  • 이석민;이은철;배성원;정법동
    • 에너지공학
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2006
  • 원자력발전소의 다차원 이상 유동 현상을 적절히 모사하기 위해 일차원 계통해석 코드에 삼차원 유동모델을 적용하였다. 그 중 다차원모델에 새롭게 적용된 이상 난류모델을 검증하기 위해 사각 slab 내부의 단상유동을 계산하여 상용 CFD 코드의 계산결과와 비교하였다. 그 결과 단상유동의 경우 난류 모델의 계산이 적절히 수행됨을 알 수 있었다. 또한 다차원 이상 유동 계산을 검증하기 위해서 RPI에서 수행된 물-공기 다차원 실험의 기포율 분포를 비교하였다. 그 결과 다차원 모델의 이상 유동 계산을 위해서는 일차원 기반의 유동양상 맵 중 수평 분리 유동양상이 제거되어야 함을 알 수 있었다. 이와 같이 유동양상 맵을 수정하여 모사한 계산결과가 실험에서 측정된 기포율의 경향을 잘 따르는 것으로 계산되었다.

IDENTIFICATION OF TWO-DIMENSIONAL VOID PROFILE IN A LARGE SLAB GEOMETRY USING AN IMPEDANCE MEASUREMENT METHOD

  • Euh, D.J.;Kim, S.;Kim, B.D.;Park, W.M.;Kim, K.D.;Bae, J.H.;Lee, J.Y.;Yun, B.J.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.613-624
    • /
    • 2013
  • Multi-dimensional two-phase phenomena occur in many industrial applications, particularly in a nuclear reactor during steady operation or a transient period. Appropriate modeling of complicated behavior induced by a multi-dimensional flow is important for the reactor safety analysis results. SPACE, a safety analysis code for thermal hydraulic systems which is currently being developed, was designed to have the capacity of multi-dimensional two-phase thermo-dynamic phenomena induced in the various phases of a nuclear system. To validate the performance of SPACE, a two-dimensional two-phase flow test was performed with slab geometry of the test section having a scale of $1.43m{\times}1.43m{\times}0.11m$. The test section has three inlet and three outlet nozzles on the bottom and top gap walls, respectively, and two outlet nozzles installed directly on the surface of the slab. Various kinds of two-dimensional air/water flows were simulated by selecting combinations of the inlet and outlet nozzles. In this study, two-dimensional two-phase void fraction profiles were quantified by measuring the local gap impedance at 225 points. The flow conditions cover various flow regimes by controlling the flow rate at the inlet boundary. For each selected inlet and outlet nozzle combination, the water flow rate ranged from 2 to 20 kg/s, and the air flow rate ranged from 2.0 to 20 g/s, which corresponds to 0.4 to 4 m/s and 0.2 to 2.3 m/s of the superficial liquid and gas velocities based on the inlet port area, respectively.

멀티형 공조시스템의 증발기 과열도에 관한 실험적 연구 및 냉매유량 제어 (Experimental Study of the Superheat and Control of the Refrigerant Flow-Rate in the Evaporator of a Multi-type Air-Conditioning System)

  • 김태섭;홍금식;손현철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.221-221
    • /
    • 2000
  • The heat exchange part in a modern multi-type air-conditioning system employs multiple-pass heat exchangers. The heat-transfer performance of an each pass in such an exchanger depends strongly on the length of the two-phase region and the mass flow of the refrigerant. The total length and diameters of the pipes, the exit conditions, and the arrangement of each pass as well as the geometrical shape of the distributor at the branching sections are considered to be major factors affecting the heat-transfer performance. The refrigerant commonly used in these systems is HCFC-22. The two objectives of this paper are to investigate the characteristics of the refrigerant flow rate and the superheat in the evaporator of a multi-type air-conditioning system for a single or simultaneous operating conditions and to control the superheat and the refrigerant flow rate of the evaporator.

  • PDF

Multi-Phase 인터리브드 방식을 이용한 고효율 양방향 DC/DC 컨버터 토폴로지에 관한 연구 (Study on the High Efficiency Bi-directional DC/DC Converter Topology Using Multi-Phase Interleaved Method)

  • 최정식;박병철;정동화;오승열
    • 조명전기설비학회논문지
    • /
    • 제29권2호
    • /
    • pp.82-90
    • /
    • 2015
  • This paper proposes an efficient bi-directional DC/DC converter topology using multi-phase interleaved method for power storage system. The proposed converter topology is used for a power storage system using a vanadium redox flow battery(VRFB) and is configured to enable bidirectional power flow for charging and discharging of VRFB. Proposed DC/DC converter of the 4 leg method is reduced to 1/4 times the rating of the reactor and the power semiconductor device so can be reduce the system size. Also, proposed topology is obtained the effect of four times the switching frequency as compared to the conventional converter in each leg with a 90 degree phase shift 4 leg method. This can suppress the reduction of the life of the secondary battery because it is possible to reduce the current ripple in accordance with the charging and discharging of VRFB and may increase the efficiency of the entire system. In this paper, it proposed bidirectional high-efficiency DC/DC converter topology Using multi-phase interleaved method and proved the validity through simulations and experiments.

마이크로채널관 내 2상 유량분배, 상분리 및 압력강하 (Two-Phase Flow Distribution, Phase Separation and Pressure Drop in Multi-Microchannel Tubes)

  • 조홍기;조금남;윤백;김영생;김정훈
    • 설비공학논문집
    • /
    • 제16권9호
    • /
    • pp.828-837
    • /
    • 2004
  • The present study investigated two-phase flow distribution, phase separation and pressure drop in multi-microchannel tubes under adiabatic condition. The test section consisted of inlet and outlet headers with the inner diameter of 19.4㎜ and 15 parallel microchannel tubes. Each microchannel tube brazed to the inlet and outlet headers and had 8 rectangular ports with the hydraulic diameter of 1.32㎜. The key experimental parameters were orientation of header (horizontal and vertical), flow direction of refrigerant into the inlet header (in-line, parallel and cross flow) and inlet quality (0.1, 0.2 and 0.3). It was found that the orientation of the header had relatively large effect on the flow distribution and phase separation, while the inlet quality didn't affect much on them. The horizontal header showed the better flow distribution and phase separation characteristics than the vertical one. The parallel flow condition with the horizontal header showed the best performance for the flow distribution and phase separation characteristics under the test conditions. Two-phase pressure drops through the microchannel tubes with the horizontal header were higher than those of the microchennel tubes with the vertical header due to gravitational effect.

Multi-array/multi-location synthetic jet을 이용한 박리 제어 (Separation control using multi-array/multi-location synthetic jet)

  • 김상훈;김종암
    • 한국항공우주학회지
    • /
    • 제34권8호
    • /
    • pp.8-15
    • /
    • 2006
  • 고받음각의 NACA23012익형에 대하여 synthetic jet을 이용하여 박리 제어를 수행하였다. 단일 synthetic jet을 이용하여 익형에 발생하는 앞전 박리를 효과적으로 지연시킬 수 있고, 또한 실속 특성을 개선 할 수 있음을 확인하였다. 그때 발생하는 비정상 유동 특성을 파악하였다. 또한, 현실적으로 구현 가능한 jet 속도를 얻기 위하여 multi-array synthetic jet의 특성을 파악하였다. 그리고, 단일 위치에 장착된 synthetic jet을 이용하여 박리를 제어 하였을 경우 익형 윗면에 발생하는 작은 와동을 제거하기 위하여, multi-location synthetic jet을 이용하였다. 작은 와동을 제거하고 안정적인 유동을 확보하기 위하여, 높은 진동수의 synthetic jet을 이용하여 국부적으로 효과적인 박리 제어를 통한 익형 주변의 유동의 전체적 특성을 안정화 시킬 수 있음을 확인하였다. Multi-location synthetic jet의 phase 변화를 이용하여 multi-array/multi-location synthetic jet의 성능 및 특성을 향상 시킬 수 있음을 확인하였다.

Multiphase Flow Modeling of Molten Material-Vapor-Liquid Mixtures in Thermal Nonequilibrium

  • Park, Ik-Kyu;Park, Goon-Cherl;Bang, Kwang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권5호
    • /
    • pp.553-561
    • /
    • 2000
  • This paper presents a numerical model of multi phase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model's ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multi phase flow conditions.

  • PDF