• Title/Summary/Keyword: Multi-Pass Shape Drawing

Search Result 13, Processing Time 0.013 seconds

Process Design for Multi Roll-Die Drawing of GDI Fuel Rail (GDI Fuel Rail 제조를 위한 멀티 롤 다이 인발 공정 설계)

  • Kim, S.H.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.390-395
    • /
    • 2016
  • GDI fuel rail is component of GDI system which directly fuel with high pressure in the engine combustion chamber. And it is required to high strength and dimensional accuracy. Multi roll-die drawing process consists of the idle roll-die and drawing die in tandem. In the course of drawing with roll-die, deformation takes place between the idle roller pair or pairs. The friction force decreases with the idle roll-die, enabling the reductions to be risen in one step. In this study, the caliber of 4-roll was designed into pass schedule that made the draw force at the exit of the drawing die be equal. In order to compensate for over-filling area, the roll caliber was modified using the result of FE-analysis. The results of FE-analysis and experiment show that the proposed design method can be used to effectively design the multi roll-die process, leading to an accurate shape and correct dimensions of the final within an allowable tolerance of ${\pm}0.08mm$. Furthermore, the productivity was evaluated by comparing with multi roll-die drawing process and conventional multi shape drawing process. The result was confirmed that it has an efficiency of about 2 times than conventional process in terms of time.

Process Map for Improving the Dimensional Accuracy in the Multi-Stage Drawing Process of Rectangular Bar with Various Aspect Ratio (다양한 종횡비의 직사각바 다단 인발공정에서 치수정도 향상을 위한 프로세스 맵)

  • Ko, P.S.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.154-159
    • /
    • 2018
  • In the rectangular bar multi-stage drawing process, the cross-section dimensional accuracy of the rectangular bar varies depending on the aspect ratio and process conditions. It is very important to predict the dimensional error of the cross-section occurring in the multi-stage drawing process according to the aspect ratio of the rectangular bar and the half die angle of each pass. In this study, a process map for improving the dimensional accuracy according to the aspect ratio was derived in the drawing process of a rectangular bar. FE-simulation of the multi-stage shape drawing process was carried out with four types of rectangular bar. The results of the FE-simulation were trained to the nonlinear relationship between the shape parameters using an Artificial Neural Network (ANN), and the process maps were derived from them. The optimum half die angles were determined from the process maps on the dimensional accuracy. The validity of the suggested process map for aspect ratios 1.25~2:1 were verified through FE-simulation and experimentation.

Evaluation of Radial Direction Non-uniform Strain in Drawn Bar (인발 봉재의 반경방향 불균일 변형률 평가)

  • Lee, S.M.;Lee, I.K.;Lee, S.Y.;Jeong, M.S.;Moon, Y.H.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.356-361
    • /
    • 2020
  • In general, the drawing process is performed in a multi-pass to meet the required shape and cross section. In the drawn material, the surface strain is relatively higher than the center due to the direct contact with the die. Therefore, a non-uniform strain distribution appears in the surface of the material where the strain is concentrated and the center having a relatively low strain, thus it is difficult to predict the strain in the drawn material. In this study, the non-uniform strain distribution was evaluated using a finite element analysis and the non-uniform strain distribution model based on the upper bound method. In addition, the relationship between the hardness and the strain was established through a simple compression test to evaluate the distribution of the strain in the experimentally multi-pass drawn bar.