• Title/Summary/Keyword: Multi-Party Computation

Search Result 25, Processing Time 0.02 seconds

Efficient and Secure Signature Scheme applicable to Secure multi-party Computation

  • Myoungin Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.77-84
    • /
    • 2023
  • This research originated from the need to enhance the security of secure multiparty computation by ensuring that participants involved in multiparty computations provide truthful inputs that have not been manipulated. While malicious participants can be involved, which goes beyond the traditional security models, malicious behaviors through input manipulation often occur in real-world scenarios, leading to privacy infringements or situations where the accuracy of multiparty computation results cannot be guaranteed. Therefore, in this study, we propose a signature scheme applicable to secure multiparty technologies, combining it with secret sharing to strengthen the accuracy of inputs using authentication techniques. We also investigate methods to enhance the efficiency of authentication through the use of batch authentication techniques. To this end, a scheme capable of input certification was designed by applying a commitment scheme and zero-knowledge proof of knowledge to the CL signature scheme, which is a lightweight signature scheme, and batch verification was applied to improve efficiency during authentication.

ANALYSIS OF PRIVACY-PRESERVING ELEMENT REDUCTION OF A MULTISET

  • Seo, Jae-Hong;Yoon, Hyo-Jin;Lim, Seong-An;Cheon, Jung-Hee;Hong, Do-Won
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • The element reduction of a multiset S is to reduce the number of repetitions of an element in S by a predetermined number. Privacy-preserving element reduction of a multiset is an important tool in private computation over multisets. It can be used by itself or by combination with other private set operations. Recently, an efficient privacy-preserving element reduction method was proposed by Kissner and Song [7]. In this paper, we point out a mathematical flaw in their polynomial representation that is used for the element reduction protocol and provide its correction. Also we modify their over-threshold set-operation protocol, using an element reduction with the corrected representation, which is used to output the elements that appear over the predetermined threshold number of times in the multiset resulting from other privacy-preserving set operations.

Blockchain-based Secure Multi-Party Computation Architecture for Privacy Preservingin IoT Network (IoT 네트워크에서 개인정보 보호를 위한 블록체인 기반의 안전한 다자간 계산 아키텍처)

  • Haotian Chen;Heeji Park;Jong Hyuk Park
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.115-118
    • /
    • 2023
  • IoT 장치들은 연구, 의료, 금융, 민생 분야 등에 지원하고 있으며 취약한 보안 메커니즘으로 인하여 IoT 네트워크의 개인정보 안전성이 중요해지고 있다. 안전한 다자간 계산은 서로 믿지 않는 참여자라도 데이터 수요자에게 원본 데이터를 누설하지 않는 범위 안에서 다자간 연합 계산 능력을 제공한다. 상업 네트워크나 산업 네트워크에서는 대량의 데이터는 다른 플랫폼들과 통신하기 때문에 기업이나 개인의 개인정보 데이터가 통신 과정에서 도청될 경우 데이터 보유자에게 막대한 경제적이나 잠재적인 손실이 발생한다. 본 논문에서 데이터 통신 과정을 계층별로 정의하여 블록체인에 기반의 안전한 다자간 계산 아키텍처를 제안한다. 제안하는 이키텍처에서 블록체인을 사용함으로써 데이터의 유효성 및 검증 가능성을 보장한다. 인증된 데이터로 안전한 다자간 계산 수행하기 때문에 통신과정의 보안성 및 기밀성도 확보한다. 암호학 및 블록체인 기술의 지속적 발전 및 활성화에 따라 제안하는 아키텍처가 지속적으로 개선할 잠재력이 있다.

Collaborative Secure Decision Tree Training for Heart Disease Diagnosis in Internet of Medical Things

  • Gang Cheng;Hanlin Zhang;Jie Lin;Fanyu Kong;Leyun Yu
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.514-523
    • /
    • 2024
  • In the Internet of Medical Things, due to the sensitivity of medical information, data typically need to be retained locally. The training model of heart disease data can predict patients' physical health status effectively, thereby providing reliable disease information. It is crucial to make full use of multiple data sources in the Internet of Medical Things applications to improve model accuracy. As network communication speeds and computational capabilities continue to evolve, parties are storing data locally, and using privacy protection technology to exchange data in the communication process to construct models is receiving increasing attention. This shift toward secure and efficient data collaboration is expected to revolutionize computer modeling in the healthcare field by ensuring accuracy and privacy in the analysis of critical medical information. In this paper, we train and test a multiparty decision tree model for the Internet of Medical Things on a heart disease dataset to address the challenges associated with developing a practical and usable model while ensuring the protection of heart disease data. Experimental results demonstrate that the accuracy of our privacy protection method is as high as 93.24%, representing a difference of only 0.3% compared with a conventional plaintext algorithm.

On the Privacy Preserving Mining Association Rules by using Randomization (연관규칙 마이닝에서 랜덤화를 이용한 프라이버시 보호 기법에 관한 연구)

  • Kang, Ju-Sung;Cho, Sung-Hoon;Yi, Ok-Yeon;Hong, Do-Won
    • The KIPS Transactions:PartC
    • /
    • v.14C no.5
    • /
    • pp.439-452
    • /
    • 2007
  • We study on the privacy preserving data mining, PPDM for short, by using randomization. The theoretical PPDM based on the secure multi-party computation techniques is not practical for its computational inefficiency. So we concentrate on a practical PPDM, especially randomization technique. We survey various privacy measures and study on the privacy preserving mining of association rules by using randomization. We propose a new randomization operator, binomial selector, for privacy preserving technique of association rule mining. A binomial selector is a special case of a select-a-size operator by Evfimievski et al.[3]. Moreover we present some simulation results of detecting an appropriate parameter for a binomial selector. The randomization by a so-called cut-and-paste method in [3] is not efficient and has high variances on recovered support values for large item-sets. Our randomization by a binomial selector make up for this defects of cut-and-paste method.