• Title/Summary/Keyword: Multi-Model Training

Search Result 352, Processing Time 0.024 seconds

Denoising Self-Attention Network for Mixed-type Data Imputation (혼합형 데이터 보간을 위한 디노이징 셀프 어텐션 네트워크)

  • Lee, Do-Hoon;Kim, Han-Joon;Chun, Joonghoon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.135-144
    • /
    • 2021
  • Recently, data-driven decision-making technology has become a key technology leading the data industry, and machine learning technology for this requires high-quality training datasets. However, real-world data contains missing values for various reasons, which degrades the performance of prediction models learned from the poor training data. Therefore, in order to build a high-performance model from real-world datasets, many studies on automatically imputing missing values in initial training data have been actively conducted. Many of conventional machine learning-based imputation techniques for handling missing data involve very time-consuming and cumbersome work because they are applied only to numeric type of columns or create individual predictive models for each columns. Therefore, this paper proposes a new data imputation technique called 'Denoising Self-Attention Network (DSAN)', which can be applied to mixed-type dataset containing both numerical and categorical columns. DSAN can learn robust feature expression vectors by combining self-attention and denoising techniques, and can automatically interpolate multiple missing variables in parallel through multi-task learning. To verify the validity of the proposed technique, data imputation experiments has been performed after arbitrarily generating missing values for several mixed-type training data. Then we show the validity of the proposed technique by comparing the performance of the binary classification models trained on imputed data together with the errors between the original and imputed values.

A Multi-chiller Operation Model Based on Deep Reinforcement Learning Considering Minimum Up-time Constraint (최소가동시간 제약을 고려한 심층 강화학습 기반의 다중 냉동기 운영 모델)

  • Jongeun Kim;Khanho Kim;Jae-Gon Kim
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.153-168
    • /
    • 2024
  • In summer, as chillers are considered the main energy consumer of building, the efficient chiller operation is considered important. However, it is difficult to operate chillers to meet the cooling demand of the building as the demand fluctuates with various factors like the internal, external environment and behavior of the occupants and as chiller's constraint cause the current operation constrains operation in future. To address these problems, this study proposes a multi-chiller operation model based on deep reinforcement learning considering the minimum up-time of the chiller. The proposed model learns the value of the chiller operations according to the state composed of metrological and cooling system information and determines operation that minimizes the difference between the supply load and the cooling demand among feasible operations. The practical applicability was improved by applying the training algorithm considering the minimum up-time constraint and Experiments results using the actual data from a Korean university confirmed that the proposed model complies with the chiller constraints and outperforms the existing chiller operation logic of the university in terms of differences from the building cooling demand.

Implementation on the evolutionary machine learning approaches for streamflow forecasting: case study in the Seybous River, Algeria (유출예측을 위한 진화적 기계학습 접근법의 구현: 알제리 세이보스 하천의 사례연구)

  • Zakhrouf, Mousaab;Bouchelkia, Hamid;Stamboul, Madani;Kim, Sungwon;Singh, Vijay P.
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.395-408
    • /
    • 2020
  • This paper aims to develop and apply three different machine learning approaches (i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and wavelet-based neural networks (WNN)) combined with an evolutionary optimization algorithm and the k-fold cross validation for multi-step (days) streamflow forecasting at the catchment located in Algeria, North Africa. The ANN and ANFIS models yielded similar performances, based on four different statistical indices (i.e., root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria (PFC)) for training and testing phases. The values of RMSE and PFC for the WNN model (e.g., RMSE = 8.590 ㎥/sec, PFC = 0.252 for (t+1) day, testing phase) were lower than those of ANN (e.g., RMSE = 19.120 ㎥/sec, PFC = 0.446 for (t+1) day, testing phase) and ANFIS (e.g., RMSE = 18.520 ㎥/sec, PFC = 0.444 for (t+1) day, testing phase) models, while the values of NSE and R for WNN model were higher than those of ANNs and ANFIS models. Therefore, the new approach can be a robust tool for multi-step (days) streamflow forecasting in the Seybous River, Algeria.

Position Improvement of a Mobile Robot by Real Time Tracking of Multiple Moving Objects (실시간 다중이동물체 추적에 의한 이동로봇의 위치개선)

  • Jin, Tae-Seok;Lee, Min-Jung;Tack, Han-Ho;Lee, In-Yong;Lee, Joon-Tark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.187-192
    • /
    • 2008
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human Jollowing by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. This paper describes appearance based unknown object tracking with the distributed vision system in intelligent space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

Individual and School Factors Affecting Critical Thinking Ability among Nursing Students (간호대학생의 비판적 사고능력에 영향을 미치는 개인요인과 학교요인)

  • Shin, Sujin;Park, Inhee;Hwang, Eunhee;Jung, Dukyoo;Kim, Kon Hee
    • Korean Medical Education Review
    • /
    • v.20 no.1
    • /
    • pp.44-50
    • /
    • 2018
  • The purpose of this study was to investigate factors associated with the critical thinking ability of nursing students at the individual and school levels. The study adopted a descriptive design and recruited 465 nursing students from four nursing schools from November 2014 to September 2015 through convenience sampling. The Clinical Critical Thinking Skill Test was used to measure critical thinking ability, and the data were analyzed with the SAS ver. 9.4 program (SAS Institute Inc., Cary, NC, USA) for descriptive statistics, t-test, analysis of variance, and multi-level model. The results showed that clinical practicum experience (${\beta}=-0.72$, p=0.025), taking critical thinking courses (${\beta}=0.63$, p=0.010), and taking simulation courses (${\beta}=0.56$, p=0.035) improved critical thinking ability in the individual level model. In the school level model, the interaction effect between the years of clinical practice done by the student and the presence of full-time clinical instructors was significant (${\beta}=1.29$, p=0.011). These results suggest that critical thinking ability improves with the more years of clinical practice individual nursing students have, and this improvement is greater with the presence of full-time clinical instructors in the school. Therefore, it is recommended that nursing students undergo critical thinking and simulation courses to develop their critical thinking ability, and dedicated clinical instructors in nursing schools should play a vital role.

Speech Recognition based on Environment Adaptation using SNR Mapping (SNR 매핑을 이용한 환경적응 기반 음성인식)

  • Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.5
    • /
    • pp.543-548
    • /
    • 2014
  • Multiple-model based speech recognition framework (MMSR) has been known to be very successful in speech recognition. Since it uses multiple hidden Markov modes (HMMs) that corresponds to various noise types and signal-to-noise ratio (SNR) values, the selected acoustic model can have a close match with the test noisy speech. However, since the number of HMM sets is limited in practical use, the acoustic mismatch still remains as a problem. In this study, we experimentally determined the optimal SNR mapping between the test noisy speech and the HMM set to mitigate the mismatch between them. Improved performance was obtained by employing the SNR mapping instead of using the estimated SNR from the test noisy speech. When we applied the proposed method to the MMSR, the experimental results on the Aurora 2 database show that the relative word error rate reduction of 6.3% and 9.4% was achieved compared to a conventional MMSR and multi-condition training (MTR), respectively.

Run-off Forecasting using Distributed model and Artificial Neural Network model (분포형 모형과 인공신경망을 활용한 유출 예측)

  • Kim, Won Jin;Lee, Yong Gwan;Jung, Chung Gil;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.35-35
    • /
    • 2019
  • 본 연구에서는 분포형 수문 모형 Drying Stream Assessment Tool and Water Flow Tracking (DrySAT-WTF)을 활용해 우리나라의 1976년부터 2015년까지의 유출량을 산정하고, 이를 다층퍼셉트론(Multi Layer Perceptron) 인경신경망 모형(Artificial Neural Network Model)에 적용해 미래 유출을 예측하였다. DrySAT-WFT은 전국 표준 유역을 대상으로 하천 건천화 원인 추적 및 평가를 위해 개발된 모형으로 유출모의를 위한 기상자료 외에 건천화 영향 요소를 고려하기 위한 산림 높이, 도로망, 지하수 이용량, 토지이용, 토심 변화에 대한 DB를 적용 가능한 것이 특징이다. DrySAT-WFT를 위한 기상자료로 모의 기간에 대한 일별 강우량, 상대습도, 평균풍속, 평균 및 최고, 최저 기온, 일조시간을 구축하였으며, 연대별 건천화 영향 요소 DB를 구축하여 적용하였다. 전국 다목적 댐 보 12지점의 유량을 활용해 모형의 보정(2005-2010) 및 검증(2011-2015)을 실시한 결과, 평균 결정계수(Coefficient of determination, $R^2$)는 0.76, 모형효율성계수(Nash-Sutcliffe efficiency, NSE)는 0.62, 평균제곱근오차(average root mean square error, RMSE)는 3.09로 신뢰성 있는 유출 모의 결과를 나타내었다. 미래 유출량 예측을 위한 MLP-ANN은 1976년부터 2015년까지의 유출 모의 결과를 Training Set으로 훈련하여 $R^2$가 0.5 이상이 되어 신뢰성을 확보하였고, 2016년부터 2018년까지의 기간을 1개월 단위로 실제 유출량과 예측 유출량을 비교하며 적용성을 검증 및 향상시켰다.

  • PDF

Machine Learning-based Optimal VNF Deployment Prediction (기계학습 기반 VNF 최적 배치 예측 기술연구)

  • Park, Suhyun;Kim, Hee-Gon;Hong, Jibum;Yoo, Jae-Hyung;Hong, James Won-Ki
    • KNOM Review
    • /
    • v.23 no.1
    • /
    • pp.34-42
    • /
    • 2020
  • Network Function Virtualization (NFV) environment can deal with dynamic changes in traffic status with appropriate deployment and scaling of Virtualized Network Function (VNF). However, determining and applying the optimal VNF deployment is a complicated and difficult task. In particular, it is necessary to predict the situation at a future point because it takes for the process to be applied and the deployment decision to the actual NFV environment. In this paper, we randomly generate service requests in Multiaccess Edge Computing (MEC) topology, then obtain training data for machine learning model from an Integer Linear Programming (ILP) solution. We use the simulation data to train the machine learning model which predicts the optimal VNF deployment in a predefined future point. The prediction model shows the accuracy over 90% compared to the ILP solution in a 5-minute future time point.

Machine-assisted Semi-Simulation Model (MSSM): Predicting Galactic Baryonic Properties from Their Dark Matter Using A Machine Trained on Hydrodynamic Simulations

  • Jo, Yongseok;Kim, Ji-hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.55.3-55.3
    • /
    • 2019
  • We present a pipeline to estimate baryonic properties of a galaxy inside a dark matter (DM) halo in DM-only simulations using a machine trained on high-resolution hydrodynamic simulations. As an example, we use the IllustrisTNG hydrodynamic simulation of a (75 h-1 Mpc)3 volume to train our machine to predict e.g., stellar mass and star formation rate in a galaxy-sized halo based purely on its DM content. An extremely randomized tree (ERT) algorithm is used together with multiple novel improvements we introduce here such as a refined error function in machine training and two-stage learning. Aided by these improvements, our model demonstrates a significantly increased accuracy in predicting baryonic properties compared to prior attempts --- in other words, the machine better mimics IllustrisTNG's galaxy-halo correlation. By applying our machine to the MultiDark-Planck DM-only simulation of a large (1 h-1 Gpc)3 volume, we then validate the pipeline that rapidly generates a galaxy catalogue from a DM halo catalogue using the correlations the machine found in IllustrisTNG. We also compare our galaxy catalogue with the ones produced by popular semi-analytic models (SAMs). Our so-called machine-assisted semi-simulation model (MSSM) is shown to be largely compatible with SAMs, and may become a promising method to transplant the baryon physics of galaxy-scale hydrodynamic calculations onto a larger-volume DM-only run. We discuss the benefits that machine-based approaches like this entail, as well as suggestions to raise the scientific potential of such approaches.

  • PDF

Landslide risk zoning using support vector machine algorithm

  • Vahed Ghiasi;Nur Irfah Mohd Pauzi;Shahab Karimi;Mahyar Yousefi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.267-284
    • /
    • 2023
  • Landslides are one of the most dangerous phenomena and natural disasters. Landslides cause many human and financial losses in most parts of the world, especially in mountainous areas. Due to the climatic conditions and topography, people in the northern and western regions of Iran live with the risk of landslides. One of the measures that can effectively reduce the possible risks of landslides and their crisis management is to identify potential areas prone to landslides through multi-criteria modeling approach. This research aims to model landslide potential area in the Oshvand watershed using a support vector machine algorithm. For this purpose, evidence maps of seven effective factors in the occurrence of landslides namely slope, slope direction, height, distance from the fault, the density of waterways, rainfall, and geology, were prepared. The maps were generated and weighted using the continuous fuzzification method and logistic functions, resulting values in zero and one range as weights. The weighted maps were then combined using the support vector machine algorithm. For the training and testing of the machine, 81 slippery ground points and 81 non-sliding points were used. Modeling procedure was done using four linear, polynomial, Gaussian, and sigmoid kernels. The efficiency of each model was compared using the area under the receiver operating characteristic curve; the root means square error, and the correlation coefficient . Finally, the landslide potential model that was obtained using Gaussian's kernel was selected as the best one for susceptibility of landslides in the Oshvand watershed.