• Title/Summary/Keyword: Multi-Model Ensemble

Search Result 98, Processing Time 0.027 seconds

Representation of Model Uncertainty in the Short-Range Ensemble Prediction for Typhoon Rusa (2002) (단기 앙상블 예보에서 모형의 불확실성 표현: 태풍 루사)

  • Kim, Sena;Lim, Gyu-Ho
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The most objective way to overcome the limitation of numerical weather prediction model is to represent the uncertainty of prediction by introducing probabilistic forecast. The uncertainty of the numerical weather prediction system developed due to the parameterization of unresolved scale motions and the energy losses from the sub-scale physical processes. In this study, we focused on the growth of model errors. We performed ensemble forecast to represent model uncertainty. By employing the multi-physics scheme (PHYS) and the stochastic kinetic energy backscatter scheme (SKEBS) in simulating typhoon Rusa (2002), we assessed the performance level of the two schemes. The both schemes produced better results than the control run did in the ensemble mean forecast of the track. The results using PHYS improved by 28% and those based on SKEBS did by 7%. Both of the ensemble mean errors of the both schemes increased rapidly at the forecast time 84 hrs. The both ensemble spreads increased gradually during integration. The results based on SKEBS represented model errors very well during the forecast time of 96 hrs. After the period, it produced an under-dispersive pattern. The simulation based on PHYS overestimated the ensemble mean error during integration and represented the real situation well at the forecast time of 120 hrs. The displacement speed of the typhoon based on PHYS was closest to the best track, especially after landfall. In the sensitivity tests of the model uncertainty of SKEBS, ensemble mean forecast was sensitive to the physics parameterization. By adjusting the forcing parameter of SKEBS, the default experiment improved in the ensemble spread, ensemble mean errors, and moving speed.

Reducing Uncertainties in Climate Change Assessment (기후변화 영향평가의 불확실성 저감연구)

  • Lee, Jae-Kyoung;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.345-351
    • /
    • 2008
  • 미래의 기후변화 영향평가에 있어 전지구모형(General Circulation Model)은 가장 중요한 자료 중 하나이다. 즉, 온실가스 방출(emission) 시나리오에 기초한 전지구모형의 모의결과를 이용하면 미래 수자원에 대한 정보를 얻을 수 있다. 하지만 미래 수자원은 방출 시나리오, 상세화(downscaling) 기법, 강우-유출모형, 전지구모형의 종류에 따라 크게 달라질 수 있어 매우 큰 불확실성(uncertainty)을 포함하고 있다. 이러한 불확실성을 줄이는 방법 중 하나로 전지구모형의 모의능력에 따라 가중치(weight)를 부여하고 결합(combining)하는 multi-model 앙상블(ensemble) 기법이 선진국을 중심으로 활발히 연구되고 있다. 본 연구에서는 우선 기후변화 영향평가를 위하여 국내에서 사용가능한 전지구모형을 조사하고 그 중CCSM3, CSRIO, ECHAM4, GFDL, MIRCO를 선택하였다. 한강 충주댐 유역에 대하여 과거($1980{\sim}1999$년)와 미래($2030{\sim}2049$년) 기간에 대하여 전지구모형의 기후정보를 간단한 선형보간법을 이용하여 상세화하였다. 다음으로 multi-model 앙상블 기법을 조사하였다. 본 연구에서는 Giorgi et al.(2002)이 제안한 Reliability Ensemble Average(REA) 기법을 적용하여 선형보간법으로 상세화한 전지구모형의 모의결과에 가중치를 주어 불확실성을 줄이는 연구를 수행하였다. 특히 REA를 구성하는 식 중 모형의 편차(bias) 뿐만 아니라 분산(variance)까지 고려함으로서 이를 개선하는 Modified-REA를 제안하였다. 제안한 방안을 이용하여 결합한 전지구모형의 모의결과가 기존 REA의 결과보다 기후정보의 불확실성을 더 줄일 수 있는 것으로 나타났다.

  • PDF

Predictability of the Arctic Sea Ice Extent from S2S Multi Model Ensemble (S2S 멀티 모델 앙상블을 이용한 북극 해빙 면적의 예측성)

  • Park, Jinkyung;Kang, Hyun-Suk;Hyun, Yu-Kyung;Nakazawa, Tetsuo
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2018
  • Sea ice plays an important role in modulating surface conditions at high and mid-latitudes. It reacts rapidly to climate change, therefore, it is a good indicator for capturing these changes from the Arctic climate. While many models have been used to study the predictability of climate variables, their performance in predicting sea ice was not well assessed. This study examines the predictability of the Arctic sea ice extent from ensemble prediction systems. The analysis is focused on verification of predictability in each model compared to the observation and prediction in particular, on lead time in Sub-seasonal to Seasonal (S2S) scales. The S2S database now provides quasi-real time ensemble forecasts and hindcasts up to about 60 days from 11 centers: BoM, CMA, ECCC, ECMWF, HMCR, ISAC-CNR, JMA, KMA, Meteo France, NCEP and UKMO. For multi model comparison, only models coupled with sea ice model were selected. Predictability is quantified by the climatology, bias, trends and correlation skill score computed from hindcasts over the period 1999 to 2009. Most of models are able to reproduce characteristics of the sea ice, but they have bias with seasonal dependence and lead time. All models show decreasing sea ice extent trends with a maximum magnitude in warm season. The Arctic sea ice extent can be skillfully predicted up 6 weeks ahead in S2S scales. But trend-independent skill is small and statistically significant for lead time over 6 weeks only in summer.

An Ensemble Model for Credit Default Discrimination: Incorporating BERT-based NLP and Transformer

  • Sophot Ky;Ju-Hong Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.624-626
    • /
    • 2023
  • Credit scoring is a technique used by financial institutions to assess the creditworthiness of potential borrowers. This involves evaluating a borrower's credit history to predict the likelihood of defaulting on a loan. This paper presents an ensemble of two Transformer based models within a framework for discriminating the default risk of loan applications in the field of credit scoring. The first model is FinBERT, a pretrained NLP model to analyze sentiment of financial text. The second model is FT-Transformer, a simple adaptation of the Transformer architecture for the tabular domain. Both models are trained on the same underlying data set, with the only difference being the representation of the data. This multi-modal approach allows us to leverage the unique capabilities of each model and potentially uncover insights that may not be apparent when using a single model alone. We compare our model with two famous ensemble-based models, Random Forest and Extreme Gradient Boosting.

Management Architecture With Multi-modal Ensemble AI Models for Worker Safety

  • Dongyeop Lee;Daesik, Lim;Jongseok Park;Soojeong Woo;Youngho Moon;Aesol Jung
    • Safety and Health at Work
    • /
    • v.15 no.3
    • /
    • pp.373-378
    • /
    • 2024
  • Introduction: Following the Republic of Korea electric power industry site-specific safety management system, this paper proposes a novel safety autonomous platform (SAP) architecture that can automatically and precisely manage on-site safety through ensemble artificial intelligence (AI) models. The ensemble AI model was generated from video information and worker's biometric information as learning data and the estimation results of this model are based on standard operating procedures of the workplace and safety rules. Methods: The ensemble AI model is designed and implemented by the Hadoop ecosystem with Kafka/NiFi, Spark/Hive, HUE, and ELK (Elasticsearch, Logstash, Kibana). Results: The functional evaluation shows that the main function of this SAP architecture was operated successfully. Discussion: The proposed model is confirmed to work well with safety mobility gateways to provide some safety applications.

Development of the Expert Seasonal Prediction System: an Application for the Seasonal Outlook in Korea

  • Kim, WonMoo;Yeo, Sae-Rim;Kim, Yoojin
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.563-573
    • /
    • 2018
  • An Expert Seasonal Prediction System for operational Seasonal Outlook (ESPreSSO) is developed based on the APEC Climate Center (APCC) Multi-Model Ensemble (MME) dynamical prediction and expert-guided statistical downscaling techniques. Dynamical models have improved to provide meaningful seasonal prediction, and their prediction skills are further improved by various ensemble and downscaling techniques. However, experienced scientists and forecasters make subjective correction for the operational seasonal outlook due to limited prediction skills and biases of dynamical models. Here, a hybrid seasonal prediction system that grafts experts' knowledge and understanding onto dynamical MME prediction is developed to guide operational seasonal outlook in Korea. The basis dynamical prediction is based on the APCC MME, which are statistically mapped onto the station-based observations by experienced experts. Their subjective selection undergoes objective screening and quality control to generate final seasonal outlook products after physical ensemble averaging. The prediction system is constructed based on 23-year training period of 1983-2005, and its performance and stability are assessed for the independent 11-year prediction period of 2006-2016. The results show that the ESPreSSO has reliable and stable prediction skill suitable for operational use.

Multi-Time Window Feature Extraction Technique for Anger Detection in Gait Data

  • Beom Kwon;Taegeun Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.41-51
    • /
    • 2023
  • In this paper, we propose a technique of multi-time window feature extraction for anger detection in gait data. In the previous gait-based emotion recognition methods, the pedestrian's stride, time taken for one stride, walking speed, and forward tilt angles of the neck and thorax are calculated. Then, minimum, mean, and maximum values are calculated for the entire interval to use them as features. However, each feature does not always change uniformly over the entire interval but sometimes changes locally. Therefore, we propose a multi-time window feature extraction technique that can extract both global and local features, from long-term to short-term. In addition, we also propose an ensemble model that consists of multiple classifiers. Each classifier is trained with features extracted from different multi-time windows. To verify the effectiveness of the proposed feature extraction technique and ensemble model, a public three-dimensional gait dataset was used. The simulation results demonstrate that the proposed ensemble model achieves the best performance compared to machine learning models trained with existing feature extraction techniques for four performance evaluation metrics.

Ensemble Knowledge Distillation for Classification of 14 Thorax Diseases using Chest X-ray Images (흉부 X-선 영상을 이용한 14 가지 흉부 질환 분류를 위한 Ensemble Knowledge Distillation)

  • Ho, Thi Kieu Khanh;Jeon, Younghoon;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.313-315
    • /
    • 2021
  • Timely and accurate diagnosis of lung diseases using Chest X-ray images has been gained much attention from the computer vision and medical imaging communities. Although previous studies have presented the capability of deep convolutional neural networks by achieving competitive binary classification results, their models were seemingly unreliable to effectively distinguish multiple disease groups using a large number of x-ray images. In this paper, we aim to build an advanced approach, so-called Ensemble Knowledge Distillation (EKD), to significantly boost the classification accuracies, compared to traditional KD methods by distilling knowledge from a cumbersome teacher model into an ensemble of lightweight student models with parallel branches trained with ground truth labels. Therefore, learning features at different branches of the student models could enable the network to learn diverse patterns and improve the qualify of final predictions through an ensemble learning solution. Although we observed that experiments on the well-established ChestX-ray14 dataset showed the classification improvements of traditional KD compared to the base transfer learning approach, the EKD performance would be expected to potentially enhance classification accuracy and model generalization, especially in situations of the imbalanced dataset and the interdependency of 14 weakly annotated thorax diseases.

  • PDF

ANALYSIS OF TWOPHASE FLOW MODEL EQUATIONS

  • Jin, Hyeonseong
    • Honam Mathematical Journal
    • /
    • v.36 no.1
    • /
    • pp.11-27
    • /
    • 2014
  • In this paper, we propose closures for multi-phase flow models, which satisfy boundary conditions and conservation constraints. The models governing the evolution of the fluid mixing are derived by applying an ensemble averaging procedure to the microphysical equations characterized by distinct phases. We consider compressible multi species multi-phase flow with surface tension and transport.

Incorporating BERT-based NLP and Transformer for An Ensemble Model and its Application to Personal Credit Prediction

  • Sophot Ky;Ju-Hong Lee;Kwangtek Na
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.9-15
    • /
    • 2024
  • Tree-based algorithms have been the dominant methods used build a prediction model for tabular data. This also includes personal credit data. However, they are limited to compatibility with categorical and numerical data only, and also do not capture information of the relationship between other features. In this work, we proposed an ensemble model using the Transformer architecture that includes text features and harness the self-attention mechanism to tackle the feature relationships limitation. We describe a text formatter module, that converts the original tabular data into sentence data that is fed into FinBERT along with other text features. Furthermore, we employed FT-Transformer that train with the original tabular data. We evaluate this multi-modal approach with two popular tree-based algorithms known as, Random Forest and Extreme Gradient Boosting, XGBoost and TabTransformer. Our proposed method shows superior Default Recall, F1 score and AUC results across two public data sets. Our results are significant for financial institutions to reduce the risk of financial loss regarding defaulters.