• Title/Summary/Keyword: Multi-Layer Perceptron Neural Network

Search Result 244, Processing Time 0.029 seconds

A Sloshing Analysis of Storage Tank using Multi-layer Perceptron Artificial Neural Network (다층퍼셉트론 인공신경망을 이용한 저장탱크 슬로싱해석)

  • Kim, Hyun-Soo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.491-496
    • /
    • 2004
  • The oscillation of the fluid caused by external forces is called sloshing, which occurs in moving vehicles with contained liquid masses, such as aircraft. cars and liquid rocket and so on. This sloshing effect could be a severe problem in vehicle stability and control. So, various baffles are used in order to reduce the sloshing. The Lagrangian, Eulerian and ALE numerical method is widely used on the analysis of sloshing presently. But, these numerical methods are needed so many CPU time. In this study, for the reduction of the sloshing analysis time, me multi.layer perceptron artificial neural network is introduced and analysis results are presented.

  • PDF

Multi-Layer Perceptron Based Ternary Tree Partitioning Decision Method for Versatile Video Coding (다목적 비디오 부/복호화를 위한 다층 퍼셉트론 기반 삼항 트리 분할 결정 방법)

  • Lee, Taesik;Jun, Dongsan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.783-792
    • /
    • 2022
  • Versatile Video Coding (VVC) is the latest video coding standard, which had been developed by the Joint Video Experts Team (JVET) of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG) in 2020. Although VVC can provide powerful coding performance, it requires tremendous computational complexity to determine the optimal block structures during the encoding process. In this paper, we propose a fast ternary tree decision method using two neural networks with 7 nodes as input vector based on the multi-layer perceptron structure, names STH-NN and STV-NN. As a training result of neural network, the STH-NN and STV-NN achieved accuracies of 85% and 91%, respectively. Experimental results show that the proposed method reduces the encoding complexity up to 25% with unnoticeable coding loss compared to the VVC test model (VTM).

Pattern Recognition of Hard Disk Defect Distribution Using Multi-Layer Perceptron Network (다층 퍼셉트론 신경망을 이용한 하드 디스크 결함 분포의 패턴 인식)

  • Moon, Un-Chul;Lee, Jae-Du
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.94-101
    • /
    • 2007
  • In the Hard Disk Drive(HDD) production, the detect pattern or defective HDD set is important information to diagnosis of defective HDD set. This paper proposes a pattern recognition neural network for the defect distribution of HDD. In this paper, 5 characteristics are determined for the classification to six standard defect pattern classes. A multi-layer perceptron is trained for the pattern classification the inputs of which are 5 characteristic values and the 6 outputs are the nodes of standard patterns. The experiment with proposed neural network shows satisfactory results.

Web access prediction based on parallel deep learning

  • Togtokh, Gantur;Kim, Kyung-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.51-59
    • /
    • 2019
  • Due to the exponential growth of access information on the web, the need for predicting web users' next access has increased. Various models such as markov models, deep neural networks, support vector machines, and fuzzy inference models were proposed to handle web access prediction. For deep learning based on neural network models, training time on large-scale web usage data is very huge. To address this problem, deep neural network models are trained on cluster of computers in parallel. In this paper, we investigated impact of several important spark parameters related to data partitions, shuffling, compression, and locality (basic spark parameters) for training Multi-Layer Perceptron model on Spark standalone cluster. Then based on the investigation, we tuned basic spark parameters for training Multi-Layer Perceptron model and used it for tuning Spark when training Multi-Layer Perceptron model for web access prediction. Through experiments, we showed the accuracy of web access prediction based on our proposed web access prediction model. In addition, we also showed performance improvement in training time based on our spark basic parameters tuning for training Multi-Layer Perceptron model over default spark parameters configuration.

A Multi-Layer Perceptron for Color Index based Vegetation Segmentation (색상지수 기반의 식물분할을 위한 다층퍼셉트론 신경망)

  • Lee, Moon-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.16-25
    • /
    • 2020
  • Vegetation segmentation in a field color image is a process of distinguishing vegetation objects of interests like crops and weeds from a background of soil and/or other residues. The performance of the process is crucial in automatic precision agriculture which includes weed control and crop status monitoring. To facilitate the segmentation, color indices have predominantly been used to transform the color image into its gray-scale image. A thresholding technique like the Otsu method is then applied to distinguish vegetation parts from the background. An obvious demerit of the thresholding based segmentation will be that classification of each pixel into vegetation or background is carried out solely by using the color feature of the pixel itself without taking into account color features of its neighboring pixels. This paper presents a new pixel-based segmentation method which employs a multi-layer perceptron neural network to classify the gray-scale image into vegetation and nonvegetation pixels. The input data of the neural network for each pixel are 2-dimensional gray-level values surrounding the pixel. To generate a gray-scale image from a raw RGB color image, a well-known color index called Excess Green minus Excess Red Index was used. Experimental results using 80 field images of 4 vegetation species demonstrate the superiority of the neural network to existing threshold-based segmentation methods in terms of accuracy, precision, recall, and harmonic mean.

A Study on Application of the Multi-layor Perceptron to the Human Sensibility Classifier with Eletroencephalogram (뇌파의 감성 분류기로서 다층 퍼셉트론의 활용에 관한 연구)

  • Kim, Dong Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1506-1511
    • /
    • 2018
  • This study presents a human sensibility evaluation method using neural network and multiple-template method on electroencephalogram(EEG). We used a multi-layer perceptron type neural network as the sensibility classifier using EEG signal. For our research objective, 10-channel EEG signals are collected from the healthy subjects. After the necessary preprocessing is performed on the acquired signals, the various EEG parameters are estimated and their discriminating performance is evaluated in terms of pattern classification capability. In our study, Linear Prediction(LP) coefficients are utilized as the feature parameters extracting the characteristics of EEG signal, and a multi-layer neural network is used for indicating the degree of human sensibility. Also, the estimation for human comfortableness is performed by varying temperature and humidity environment factors and our results showed that the proposed scheme achieved good performances for evaluation of human sensibility.

Enhanced Fuzzy Multi-Layer Perceptron

  • Kim, Kwang-Baek;Park, Choong-Sik;Abhjit Pandya
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.1-5
    • /
    • 2004
  • In this paper, we propose a novel approach for evolving the architecture of a multi-layer neural network. Our method uses combined ART1 algorithm and Max-Min neural network to self-generate nodes in the hidden layer. We have applied the. proposed method to the problem of recognizing ID number in student identity cards. Experimental results with a real database show that the proposed method has better performance than a conventional neural network.

  • PDF

New Approach to Optimize the Size of Convolution Mask in Convolutional Neural Networks

  • Kwak, Young-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Convolutional neural network (CNN) consists of a few pairs of both convolution layer and subsampling layer. Thus it has more hidden layers than multi-layer perceptron. With the increased layers, the size of convolution mask ultimately determines the total number of weights in CNN because the mask is shared among input images. It also is an important learning factor which makes or breaks CNN's learning. Therefore, this paper proposes the best method to choose the convolution size and the number of layers for learning CNN successfully. Through our face recognition with vast learning examples, we found that the best size of convolution mask is 5 by 5 and 7 by 7, regardless of the number of layers. In addition, the CNN with two pairs of both convolution and subsampling layer is found to make the best performance as if the multi-layer perceptron having two hidden layers does.

Hierarchical Neural Network for Real-time Medicine-bottle Classification (실시간 약통 분류를 위한 계층적 신경회로망)

  • Kim, Jung-Joon;Kim, Tae-Hun;Ryu, Gang-Soo;Lee, Dae-Sik;Lee, Jong-Hak;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.226-231
    • /
    • 2013
  • In The matching algorithm for automatic packaging of drugs is essential to determine whether the canister can exactly refill the suitable medicine. In this paper, we propose a hierarchical neural network with the upper and lower layers which can perform real-time processing and classification of many types of medicine bottles to prevent accidental medicine disaster. A few number of low-dimensional feature vector are extracted from the label images presenting medicine-bottle information. By using the extracted feature vectors, the lower layer of MLP(Multi-layer Perceptron) neural networks is learned. Then, the output of the learned middle layer of the MLP is used as the input to the upper layer of the MLP learning. The proposed hierarchical neural network shows good classification performance and real- time operation in the test of up to 30 degrees rotated to the left and right images of 100 different medicine bottles.

A Study of the Automatic Berthing System of a Ship Using Artificial Neural Network (인공신경망을 이용한 선박의 자동접안 제어에 관한 연구)

  • Bae, Cheol-Han;Lee, Seung-Keon;Lee, Sang-Eui;Kim, Ju-Han
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.589-596
    • /
    • 2008
  • In this paper, Artificial Neural Network(ANN) is applied to automatic berthing control for a ship. ANN is suitable for a maneuvering such as ship's berthing, because it can describe non-linearity of the system. Multi-layer perceptron which has more than one hidden layer between input layer and output layer is applied to ANN. Using a back-propagation algorithm with teaching data, we trained ANN to get a minimal error between output value and desired one. For the automatic berthing control of a containership, we introduced low speed maneuvering mathematical models. The berthing control with the structure of 8 input layer units in ANN is compared to 6 input layer units. From the simulation results, the berthing conditions are satisfied, even though the berthing paths are different.