• Title/Summary/Keyword: Multi-Layer Air Defense System

Search Result 2, Processing Time 0.022 seconds

A Study on Developing Low Altitude Multi-layer Air Defense System to Protect Megacities in the Korean Peninsula (한국형 메가시티 저고도 다중방공체계 구축 방안)

  • Sin, Ui-Cheol;Cho, Sang Keun;Park, Sung Jun;Sim, Jun Hak;Koo, Ja Hong;Park, Sang-Hyuk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.393-398
    • /
    • 2022
  • Megacities of the Repulic of Korea(ROK) will have increased by urbanization and the fourth industrial revolution. Mgacities are absolutely the opportunity factor to make human life enriched. Simultaneously, those are the challenge foctor considering the crucial conventional threat such as massive artillery and multiple rocket launcher from the North Korea. Israel that has faced the geopolitical situation of ROK developed the Multi-layer air defense system to offset the low altitude threat from the neighboring nations. As a result, Israel substantially removed plenty of Hamas' rockes and suicidal drones in 2021. Applying Israel's concept, North Korea's low altitude threat toward the ROK's megacities can effectively be eliminated. Furthermore, this Multi-layer air defense system can be a game-changer that gets rid of the low and high altitude threat from North Korea and neighboring nations with both hyperconnected sensor-C2-shooter and artificial intelligence. Through this approach, the ROK will be able to achieve the prosperity and prowth of nation at the center of Megacities concentrated on PMESII(Politics, Military, Economy, Society, Information, and Infrastructure) factors.

SHAPE OPTIMIZATION OF UCAV FOR AERODYNAMIC PERFORMANCE IMPROVEMENT AND RADAR CROSS SECTION REDUCTION (공력 향상과 RCS 감소를 고려한 무인 전투기의 형상 최적설계)

  • Jo, Y.M.;Choi, S.I.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.56-68
    • /
    • 2012
  • Nowadays, Unmanned Combat Air Vehicle(UCAV) has become an important aircraft system for the national defense. For its efficiency and survivability, shape optimization of UCAV is an essential part of its design process. In this paper, shape optimization of UCAV was processed for aerodynamic performance improvement and Radar Cross Section(RCS) reduction using Multi Objective Genetic Algorithm(MOGA). Lift and induced drag, friction drag, RCS were calculated using panel method, boundary layer theory, Physical Optics(PO) approximation respectively. In particular, calculation applied Radar Absorbing Material(RAM) was performed for the additional RCS reduction. Results are indicated that shape optimization is performed well for improving aerodynamic performance, reducing RCS. Further study will be performed with higher fidelity tools and consider other design segments including structure.