• Title/Summary/Keyword: Multi-Hole Nozzle

Search Result 28, Processing Time 0.024 seconds

On Rate of Multi-Hole Injector for Diesel Engine (디이젤 기관용 다공연료 분사 밸브의 분사율 측정)

  • Jeong, Dal-Sun;An, Su-Gil;Gwon, Gi-Rin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 1986
  • Ifis recommended that the injection rate should be accurate and reliable in the input data of the performance simulation in diesel engine. Matsuoka Sin improved W. Bosch's injection ratio measurement system. Matsuoka Sin reduced length of the test pipe and set the orifice. However, it was not measured accurately to measure the injection ratio due to reflection wave. In the present thesis, the improved measurement system with combination of the conventional W. Bosch type injection ratio measurement system and Matsuoka Sin type corrected W. Bosch type was practically made. The location of orifice and throttle valve was modified and set one more back pressure valve in order to reduce the effect of reflection wave. The results according to injection condition of multi-hole nozzle are following: 1. Measurement error of injection ratio measurement system in this thesis was $\pm$ 1 %, therefore, its reliability was good. 2. The form of injetion ratio is changed from trapezoidal shape to triangle shape with increase of revolution per minute when injection amount is constant. 3. In the case of constant rpm, the initial injection ratio is almost constant regardless of the amount, meanwhile the injection period becomes longer with increase of the amount. 4. The injection pressure of nozzle isn't largely influenced with injection ratio in the case of constant injection amount and rpm, otherwise the initial injection amount is increased by 3-4% when the injection pressure is low. 5. The injection ratio isn't nearly influenced with back pressure.

  • PDF

Diesel Spray Developement from VCO nozzles for High Pressure Direct-Injection (VCO노즐에서 고압으로 분사되는 디젤분무의 특성)

  • 강진석;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.28-36
    • /
    • 2000
  • Spray characteristics of diesel fuel injection is one of the most important factors in diesel combustion and pollutant emissions especially in HSDI (High Speed Direct Injection) diesel engines where the interval between the onset of combustion and the evaporation of atomized fuel is relatively short, An investigation into various spray characteristics from different holes of VCO(Valve Covered Orifice) nozzles was performed and its results were compared to standard sac nozzle. The global characteristics of spray, including spray angle, spray tip penetration, and spray pattern were measured from the spray images which were frozen by an instantaneous photography with a spark light source. For better understanding of spray behavior, SMD of the fuel sprays from multi hole nozzles were measured with back light imaging while the sprays from the other holes are covered by a purpose-built nozzle cap. The investigation manifestly reveals the different spray patterns at the beginning of injection produced by VCO nozzles can be identified as three distinct types with their own macroscopic and microscopic characteristics, while macroscopic non-uniformity disappears at 0.9∼1.0ms from the start of injection.

  • PDF

A Study on the Shell Wall Thinning by Flow Acceleration Corrosion and Mitigation Plan and Design Modification of a Feedwater Heater Impingement Baffle (유동가속부식으로 인한 급수가열기 동체 감육현상 규명과 완화 방안 및 충격판 설계개선에 관한 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, In-Tae
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.83-93
    • /
    • 2010
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feedwater heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare degree of shell wall thinning mitigation rate to squared type with mitigation rate of other type baffle plate, four different types of impingement baffle plate-squared, curved, mitigating type and multi-hole type-applied inside the shell. With these comparison data, this paper describes operation of experiments and numerical analysis which is composed similar condition with real feed water heater. And flow visualization is operated for verification of experiments and numerical analysis. In conclusion, this study shows that mitigating type and multi-hole type baffle plate are more effective than other baffle plate about prevention of pressure concentration and pressure value decrease.

Validation of underwater explosion response analysis for airbag inflator using a fluid-structure interaction algorithm

  • Lee, Sang-Gab;Lee, Jae-Seok;Chung, Hyun;Na, Yangsup;Park, Kyung-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.988-995
    • /
    • 2020
  • Air gun shock systems are commonly used as alternative explosion energy sources for underwater explosion (UNDEX) shock tests owing to their low cost and environmental impact. The airbag inflator of automotive airbag systems is also very useful to generate extremely rapid underwater gas release in labscale tests. To overcome the restrictions on the very small computational time step owing to the very fine fluid mesh around the nozzle hole in the explicit integration algorithm, and also the absence of a commercial solver and software for gas UNDEX of airbag inflator, an idealized airbag inflator and fluid mesh modeling technique was developed using nozzle holes of relatively large size and several small TNT charges instead of gas inside the airbag inflator. The objective of this study is to validate the results of an UNDEX response analysis of one and two idealized airbag inflators by comparison with the results of shock tests in a small water tank. This comparison was performed using the multi-material Arbitrary Lagrangian-Eulerian formulation and fluid-structure interaction algorithm. The number, size, vertical distance from the nozzle outlet, detonation velocity, and lighting times of small TNT charges were determined. Through mesh size convergence tests, the UNDEX response analysis and idealized airbag inflator modeling were validated.

Combustion Characteristics and On-site Performance Test of a Double-cone Partial Premixed Nozzle with Various Fuel hole Patterns (이중 콘형 부분예혼합 GT 연료노즐의 연소특성 및 발전플랜트 실증)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June;Min, Kyungwook;Kang, Do Won
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.22-28
    • /
    • 2021
  • Combustion characteristics were examined experimentally for a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. An original model and a variant with a different fuel injection pattern are tested to compare their combustion characteristics such as NOx, CO and stability in pressurized conditions with single burner-flame and in an ambient multi-flame conditions with multi-burners. Test results show that NOx emissions are smaller for the variant, whose number of fuel holes is reduced with the same total area of fuel holes, in ambient and pressurized single-flame conditions with single burner, which results from enhanced fuel/air mixing due to a higher penetration of fuel into the air stream. The multi-burnerflame test results show that NOx emissions are smaller for the variant due to reduced flame interactions, which, on the contrary, slightly reduces the stability margin. On-site test results fromin an actual power plants also show that NOx emissions are reduced for the variant, compared with the original one, which is in agreement with the lab test results stated above.

A Study on SS400 Cutting Characteristics using Continuous Wave Fiber Laser (연속파 파이버 레이저를 이용한 SS400의 절단 특성에 관한 연구)

  • Oh, Yong-Seok;Lee, Ka-Ram;Park, Eun-Kyeong;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.644-650
    • /
    • 2012
  • This paper show the 2kW fiber laser cutting properties of SS400. The study was comparison of traditional 4kW $CO_2$ Laser cutting and 2kW Fiber laser cutting characteristics for the application of Industrial 2D Laser Cutting Machine. The laser used in this investigation was an IPG YLU-2000 multi-mode Ytterbium Fiber machine with a maximum power of 2000W and a wave length of 1070 nm. The laser was used in its Continuous Wave (CW) mode with an approximately top hat beam intensity distribution. Fiber laser high quality cuts at a large range of speeds (ranging from 2000 to 3800 mm/min) which has been obtained for the 2.3mm Sheet of SS400. 2kW power Fiber laser cut was able to max. 20mm sheets of SS400 (speed range from 650 to 850 mm/min). Fiber laser cutting used in conventional hole nozzle could cut 12mm SS400 but used in special dual cutting nozzle could cut 20mm SS400.

Study on the Injection Characteristics using Injection Rate in a Direct-injection Gasoline Injector with Multi-hole (분사율을 이용한 직접 분사식 다공 가솔린 인젝터의 분사특성 연구)

  • Park, Jeonghyun;Shin, Dalho;Park, Su Han
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • This paper presents an experimental study on the GDI injector with Bosch method. The injection characteristics, such as the injection quantity, the injection rate, the maximum velocity of the nozzle exit and the injection delay were studied through the change of the injection pressure, the tube pressure and energizing duration in injection rate measurement device using nheptane. The injection quantity is increased by increasing injection pressure, decreasing tube pressure or increasing energizing duration. As the difference of the injection quantity changed, the shape of injection rate was moved with a constant form. The maximum velocity of the nozzle exit showed a tendency to increase as the injection pressure is increased. However, tube pressure did not affect. Overall, it was confirmed that the closing delay is longer than the opening delay in all conditions. As the injection pressure increased, the result has a tendency to decrease the closing delay, it did not affect the opening delay. Reduction of the closing delay showed the reduction of the injection duration. the tube pressure and energizing duration did not affect the injection delay (opening delay, closing delay).

Improvement of Spray Coating Uniformity using ESD Electrodes (ESD 전극을 이용한 분무코팅 균일도 개선에 관한 연구)

  • Dang, Hyun-Woo;Yang, Seong-Wook;Doh, Yang-Hoi;Choi, Kyung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • In this study, experiments are conducted to improve spray coating uniformity by using second and third electrodes based on the electrospray atomization mechanism. The uniformity of fabricated thin films can be improved by adjusting the design of the second electrode. The implementation of the second electrode with an elongated hole and a bending angle of $90^{\circ}$ results in highly uniform films. In addition, induced area to substrate is increased by lowering the applied voltage using the third electrode with a round rod shape. A linear correlation between applied voltage and induced area is confirmed. Thin film thickness and surface roughness are measured after the fabrication of thin films through the electrospray process. It is confirmed that a thin film is formed having an average thickness of 273.44 nm, a thickness uniformity of less than 10%, and a surface roughness of 3 nm.