• Title/Summary/Keyword: Multi-Grid

Search Result 607, Processing Time 0.024 seconds

A WPAN Protocol for N-Screen Services in Indoor and Ship Area Networks (선박 및 실내 N-스크린 서비스를 위한 WPAN 프로토콜)

  • Hur, Kyeong;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1185-1192
    • /
    • 2015
  • A wireless bridge is essential to transmit control and managing information to sensors or instruments from a central integrated ship area network station. In this paper, a WPAN protocol is adopted for development of a seamless N-screen wireless service in Indoor and Ship Area Networks. Furthermore, to provide the OSMU (One Source Multi Use) N-screen service through P2P streaming in the seamless WPAN protocol, a Grid-based WPAN networking technology is proposed and analyzed. The proposed Grid-based WPAN networking technology supports multi-path and fast path-setup functions for N-screen communications. The simulation results demonstrate that the proposed Grid-based WPAN networking technology outperforms the IEEE 802.15.4 based network in terms of N-screen transmission delay.

MG Operation Technique based on DC-Grid Stability using ESS (ESS를 활용한 DC-Grid 안정성 기반 MG 운영 기법)

  • Jong-Cheol Kim;Chun-Sung Kim;Yong-Un Park;Seong-Mi Park;Sung-Jun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1269-1278
    • /
    • 2023
  • This paper presents an operational technique that can secure the stability of DC-Grid centering on MG operated based on ESS in multiple MG where three DC-based microgrid(MG) are interconnected. MG1(PV 600kWp, ESS 1.5MWh) has an 830Vdc grid voltage, MG2(PV 300kWp, ESS 1.1MWh) and MG3(PV 100kWp, ESS 500kWh) are DC-based MG with a 750Vdc grid voltage, and MG1 and MG2, 3 are linked by separate DC/DC converters (BTB). In order to keep different grid voltages stable, the power transmission capacity between MG1 and two MG(MG2, MG3) connected with an independent BTB converter was adjusted to secure the overall stability of the system, and this was verified by confirming that the surplus capacity of ESS was maintained in actual operation.

A Study on Radiation Shielding for Grid-stiffened Multi-Functional Composite Structures (격자-강화된 다기능 복합재 구조체의 방사차폐에 관한 연구)

  • Jang, Tae Seong;Rhee, Juhun;Seo, Hyun-Suk;Hyun, Bum-Seok;Kim, Taig Young;Seo, Jung Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.629-639
    • /
    • 2014
  • This paper deals with an alternative multi-functional structures by using grid-stiffened composite structure with excellent bending stiffness and lightweight characteristics which is capable of easy embedding of electrical/electronic circuitry into structure. The enhancement of thermal conduction capability is made by the application of pitch-based carbon fiber. The lightweight radiation spot shielding technique is also proposed for multi-functional structures without conventional housing and the effectiveness of selective radiation shielding is validated through the proton irradiation test.

Multi Label Deep Learning classification approach for False Data Injection Attacks in Smart Grid

  • Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2168-2187
    • /
    • 2021
  • The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.

A Novel Online Multi-section Weighed Fault Matching and Detecting Algorithm Based on Wide-area Information

  • Tong, Xiaoyang;Lian, Wenchao;Wang, Hongbin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2118-2126
    • /
    • 2017
  • The large-scale power system blackouts have indicated that conventional protection relays that based on local signals cannot fit for modern power grids with complicated setting or heavily loaded-flow transfer. In order to accurately detect various faulted lines and improve the fault-tolerance of wide-area protection, a novel multi-section weighed fault matching and detecting algorithm is proposed. The real protection vector (RPV) and expected section protection vectors (ESPVs) for five fault sections are constructed respectively. The function of multi-section weighed fault matching is established to calculate the section fault matching degrees between RPV and five ESPVs. Then the fault degree of protected line based on five section fault degrees can be obtained. Two fault detecting criterions are given to support the higher accuracy rate of detecting fault. With the enumerating method, the simulation tests illustrate the correctness and fault-tolerance of proposed algorithm. It can reach the target of 100% accuracy rate under 5 bits error of wide-area protections. The influence factors of fault-tolerance are analyzed, which include the choosing of wide-area protections, as well as the topological structures of power grid and fault threshold.

Conceptual Design of Multi-Functional Structure using Rectangular Grid-Stiffened Structure for Satellite (위성용 사각형 격자강화 구조의 다기능 구조체 개념설계)

  • Seo, Hyun-Suk;Jang, Tae-Seong;Rhee, Ju-Hun;Kim, Won-Seock;Hyun, Bum-Seok;Lim, Jae-Hyuk;Hwang, Do-Soon;Lee, Sang-Kon;Cho, Hee-Keun;Han, Eun-Soo;Kim, Im-Soo;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.526-534
    • /
    • 2011
  • The MFS (Mlti-Functional Structure) concept, which integrates the electronics, thermal control and structure into a single packaging system, has been developed and applied to reduce the volume and weight of the satellite. Therefore, this MFS can eliminate the bulky chassis/frames, cables and connectors of the electronic equipment. The main point of this traditional MFS is the replacement of the electrical chassis/frames with MCMs (Multi-Chip Modules) that require much costs and efforts for developing. This paper shows the new MFS concept that effectively saves the volume and weight. The structure including the thermal control and radiation shielding elements will be designed and manufactured as the rectangular grid-stiffened structure. The rectangular grid-stiffened structure is the modification of the iso-grid structure, and provides the enough spaces for putting the general PCBs without the chassis/frames.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.

A Study of Accuracy Improvement of an Analysis of Flow around Arbitrary Bodies by Using an Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 사용한 임의 물체주위 유동해석의 정도 향상을 위한 연구)

  • Park I. R.;Chun H. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2001
  • An Eulerian-Lagrangian method, so called immersed boundary method, is used for analysing viscous flow around arbitrary bodies, where governing equations are discretized on a regular grid by using a finite volume method. To improve the accuracy of flow near body boundaries, a second-order accurate interpolation scheme is used and a level-set based grid deformation method is presented to construct the adaptive grids around body boundaries. The present scheme is used to simulate steady flow around a semicircular cylinder mounted on the bottom of flow domain and calculated results are validated by results of a body fitted grid method. Finally, present method is applied to a complex flow around multi body and the usefulness is checked by investigating calculated results.

  • PDF

Meshless Advection using Flow Directional Local Grid (유동방향 국소격자를 이용한 비격자법의 대류항에 관한 수치도식)

  • Jung, Sung-Jun;Lee, Byung-Hyuk;Park, Jong-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.10-17
    • /
    • 2008
  • In this paper an accurate and stable gridless method that can be applied to multi-dimensional convection problems is developed on a flow directional local grid. A two dimensional pure convection problem is calculated and more accurate and stable solution is obtained compared with other schemes in grid method. The tested numerical schemes include 1st-order upwind scheme, 2nd-order Leith scheme, 3rd-order MUSCL, and QUICK scheme. It is seen that more accurate results are expected when the schemes combined with a MMT control limiter.