• 제목/요약/키워드: Multi-Flow

검색결과 2,278건 처리시간 0.026초

알루미늄 다채널 평판관내 R22 대체냉매의 흐름 응축 열전달 성능 비교 (Flow Condensation Heat Transfer Coefficients of R22 Alternative refrigerants in Aluminum Multi-Channel Tube)

  • 이기영;이민행;정동수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.249-255
    • /
    • 2005
  • Flow condensation heat transfer coefficients(HTCs) of R22, R4IO, Propane(R290) were measured inside a horizontal 9 hole aluminum multi-channel flat tube. The main test section in the refrigerant loop was made of a 0.53 m long multi-channel flat tube of hydraulic diameter of 1.4 mm. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in qualities of 0.1 ${\sim}$ 0.9 at mass flux of $200{\sim}400$ $kg/m^2s$ and heat flux of $7.3{\sim}7.7$ $kW/m^2$ at the saturation temperature of $4^{\circ}C$. All popular heat transfer correlations in single-phase subcooled liquid flow and flow condensation originally developed for large single tubes predicted the present data of the multi channel flat tube within 25% deviation when effective heat transfer area was used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Hence, a modified correlation based on the present data was proposed which could be applied to small diameter tubes with effective heat transfer area. The correlation showed a mean deviation of less than 20% for all data.

  • PDF

런너밸런스 알고리즘을 이용한 멀티캐비티 최적성형에 관한 연구 (A Study on The Optimum Design of Multi-Cavity Molding Parts Using The Runner Balance Algorithm)

  • 박균명;김청균
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.41-46
    • /
    • 2003
  • The objective of this paper is to present a methodology for automatically balancing multi-cavity injection molds with the aid of flow simulation. After the runner and cavity layout has been designed, the methodology adjusts runner and gate sizes iteratively based on the outputs of flow analysis. This methodology also ensures that the runner sizes in the final design are machinable. To illustrate this methodology, an example is used wherein a 3-cavity mold is modeled and filling of all the cavities at the same time is achieved. Based on the proposed methodology, a multicavity mold with identical cavities is balanced to minimize overall unfilled volume among various cavities at discrete time steps of the molding cycle. The example indicates that the described methodology can be used effectively to balance runner systems for multi-cavity molds.

Multi-Cellular Natural Convection in the Melt during Convection- Dominated Melting

  • Kim, Sin;Kim, Min-Chan
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.94-101
    • /
    • 2002
  • Convection-dominated melting in a rectangular cavity is analyzed numerically with particular attention to the multi-cellular flows in the melt. At the earlier stage of the melting, the melt region is quite similar to a cavity with high aspect rati71, where the multi-cellular natural convection appears. Numerical results show that the formation and evolution of the multiple flow cells in the melt region is approximately similar to t]tat of a single-phase flow in a tall cavity with the same aspect ratio; however, the continuous change of the melt region due to the melting affects the detailed process. Also, numerical aspects for the prediction of the detailed flow structure in the melt are discussed.

비압축성 점성유동 해석에서의 Multi-Stage Runge-Kutta 기법의 수렴특성 연구 (CONVERGENCE CHARACTERISTICS OF MULTI-STAGE RUNGE-KUTTA METHODS IN INCOMPRESSIBLE VISCOUS FLOW COMPUTATIONS)

  • 박원찬;문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.73-80
    • /
    • 1997
  • Objective of the present study is to examine the convergence characteristics of the various multi-stage Runge-Kutta methods in solving the incompressible Navier-Stokes equations of a time-marching from casted by the artificial compressibility method. Convergence characteristics are examined over 2-stage, 4-stage and hybrid type (using 4-, 3-, 2-stages sequentially) Runge-Kutta methods for a laminar lid-driven cavity flow, and also for a turbulent bump channel flow using Chien's low-Reynolds number turbulence model. Efforts are made to establish a stable and fast convergent multi-stage Runge-Kutta method with minimal artificial dissipations.

  • PDF

다단축류압축기의 공력성능 예측용 계산격자 생성기법 연구 (Computational Grid Generation for Aero-Performance Prediction of Multi-staged Axial Compressors)

  • 정희택;김주섭
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.39-44
    • /
    • 1998
  • Computational grids used in the numerical simulation of multi staged turbomachinery flow fields are generated. A multiblock structure simplifies the creation of structured H-grids about complex turbomachinery geometries and facilitate the creation of a grid for multi-row topologies. The numerical algorithm adopts the combination of the algebraic and elliptic method to create the internal grids efficiently and quickly. The input module is made of the results of the preliminary design, i.e., flow-path, aerodynamic conditions along the spanwise direction, and the blade profile data. The final grids generated from each module of the system are used as the preprocessor for the performance prediction of the single row cascades and the flow simulation inside the multi staegd blade passage. Application to low pressure compressor of industrial gas turbine engines was demonstrated to be very reliable and practical in support of design activities.

  • PDF

다상유체해석을 통한 기포결함 예측과 금형설계기술 (Study for Permanent Mold Design Technology and Porosity Defect Prediction Method by Multi-Phase Flow Numerical Simulations)

  • 최영심;조인성;황호영;최정길;홍준호
    • 소성∙가공
    • /
    • 제14권3호
    • /
    • pp.224-232
    • /
    • 2005
  • The high-pressure die-casting is one of the most effective methods to produce a large amount of products in short cycle time. This process, however, has a problem that the gas porosity defect appears easily. The generation of gas porosity is known mainly due to the air entrapment during the injection stage. Most of numerical simulations for the molten metal flow pattern observations have done in the treating of one phase fluid flow but the gas-liquid interface is essentially multi- phase phenomenon. In this paper, the two-phase fluid flow numerical simulation methods have been adapted to predict the gas porosity generations in the molten metal. The accuracy and the usefulness of the new simulation module have been emphasized and verified through some comparison experiments.

다중-익형 주위 유동장 및 양력-향상 탭의 영향에 대한 수치적 연구 (Numerical Study on the Flow Field about Multi-element Airfoils and the Effect of the Lift-enhancing Tabs)

  • 박인철;장석;이득영;김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.331-336
    • /
    • 2011
  • The flow fields over multi-element airfoils with lift-enhancing flat-plate tabs were numerically investigated. Common choice of the height of the lift-enhancing tabs usually ranges from 0.25% to 1.25% of the reference airfoil chord, and in this study the effect of the position of the tab with l%-chord height was studied by varying the distance of the tab from the trailing edge ranging from 0.5% to 2% of the reference chord. In this paper, the effects of lift-enhancing tabs with various position were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Computed streamlines show that the additional turning caused by the tab reduces the amount of separated flow on the flap.

  • PDF

적층 벤더형 압전식 공압밸브의 내구 특성 (Endurance of Pneumatic Valve with a Multi-bender PZT Actuator)

  • 윤소남;박인섭
    • 동력기계공학회지
    • /
    • 제18권2호
    • /
    • pp.31-36
    • /
    • 2014
  • In this paper, pneumatic valve which consists of valve body, valve controller, nozzle and a multi-bender PZT actuator was suggested and fabricated. The fabricated pneumatic valve was experimented for performance evaluation. From the experimental results, we know that the flow rate of the suggested valve is 23 lpm at the pressure difference of 1bar and the maximum flow rate is 30 lpm at the pressure difference of 4 bar. The flow rates after endurance test of 9.8 million were 22.57 lpm and 28.62 lpm at the pressure difference of 1bar and 4bar, respectably. Finally, it was verified that the B10 life of the suggested pneumatic valve is over 50 million.

Twin-skeg형 컨테이너선 주위의 격자계 생성과 유동 해석 (Grid Generation and flow Analysis around a Twin-skeg Container Ship)

  • 박일룡;김우전;반석호
    • 대한조선학회논문집
    • /
    • 제41권1호
    • /
    • pp.15-22
    • /
    • 2004
  • Twin-skeg type stern shapes are recently adopted for very large commercial ships. However it is difficult to apply a CFD system to a hull form having twin-skeg, since grid topology around a twin-skeg type stern is more complicated than that of a conventional single-screw ship, or of an open-shaft type twin-screw ship with center-skeg. In the present study a surface mesh generator and a multi-block field grid generation program have been developed for twin-skeg type stern. Furthermore, multi-block flow solvers are utilized for potential and viscous flow analysis around a twin-skeg type stern The present computational system is applied to a 15,000TEU container ship with twin-skeg to prove the applicability. Wave profiles and wake distribution are calculated using the developed flow analysis tools and the results are compared with towing tank measurements.

고점성 액체 내부에서의 다중 노즐 버블링에 의한 유동특성에 대한 실험적 연구 (An Experimental Study on the Flow Characteristics in Highly Viscous Liquid by Multi-Nozzle Bubbling)

  • 김현동;류승규;김경천
    • 대한기계학회논문집B
    • /
    • 제31권2호
    • /
    • pp.195-201
    • /
    • 2007
  • A visualization study of flow characteristics in a mixer using multi-nozzle bubbling was performed. The mixer is filed with liquid glycerin (dynamic viscosity = $1000mPa{\cdot}s\;at\;25^{\circ}C$) and convective mixing is induced by air bubbles generated from 9 orifices installed on the bottom of the mixer. To visualize the flow field, PIV (Particle Image Velocimetry) system consisting of 532nm Nd:YAG laser, $2k{\times}2k$ CCD camera and synchronizer is adopted. The bubbles generated with uniform size and frequency form bubble stream and bubble streams rise vertically without interaction between bubble streams. Mixing efficiency is affected by the height of bubbler and the effective height of bubbler is 20nm from the bottom of the mixer.