• 제목/요약/키워드: Multi-Emotional Signal Receiving Modules

검색결과 3건 처리시간 0.019초

A Development of Multi-Emotional Signal Receiving Modules for Cellphone Using Robotic Interaction

  • Jung, Yong-Rae;Kong, Yong-Hae;Um, Tai-Joon;Kim, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2231-2236
    • /
    • 2005
  • CP (Cellular Phone) is currently one of the most attractive technologies and RT (Robot Technology) is also considered as one of the most promising next generation technology. We present a new technological concept named RCP (Robotic Cellular Phone), which combines RT and CP. RCP consists of 3 sub-modules, $RCP^{Mobility}$, $RCP^{Interaction}$, and $RCP^{Integration}$. $RCP^{Interaction}$ is the main focus of this paper. It is an interactive emotion system which provides CP with multi-emotional signal receiving functionalities. $RCP^{Interaction}$ is linked with communication functions of CP in order to interface between CP and user through a variety of emotional models. It is divided into a tactile, an olfactory and a visual mode. The tactile signal receiving module is designed by patterns and beat frequencies which are made by mechanical-vibration conversion of the musical melody, rhythm and harmony. The olfactory signal receiving module is designed by switching control of perfume-injection nozzles which are able to give the signal receiving to the CP-called user through a special kind of smell according to the CP-calling user. The visual signal receiving module is made by motion control of DC-motored wheel-based system which can inform the CP-called user of the signal receiving through a desired motion according to the CP-calling user. In this paper, a prototype system is developed for multi-emotional signal receiving modes of CP. We describe an overall structure of the system and provide experimental results of the functional modules.

  • PDF

유비쿼터스 RCP 상호작용을 위한 다감각 착신기능모듈의 개발 (A Development of Multi-Emotional Signal Receiving Modules for Ubiquitous RCP Interaction)

  • 장경준;정용래;김동욱;김승우
    • 제어로봇시스템학회논문지
    • /
    • 제12궈1호
    • /
    • pp.33-40
    • /
    • 2006
  • We present a new technological concept named RCP (Robotic Cellular Phone), which combines RT and CP. That is an ubiquitous robot. RCP consists of 3 sub-modules, RCP Mobility, RCP interaction, and RCP Integration. RCP Interaction is the main focus of this paper. It is an interactive emotion system which provides CP with multi-emotional signal receiving functionalities. RCP Interaction is linked with communication functions of CP in order to interface between CP and user through a variety of emotional models. It is divided into a tactile, an olfactory and a visual mode. The tactile signal receiving module is designed by patterns and beat frequencies which are made by mechanical-vibration conversion of the musical melody, rhythm and harmony. The olfactory signal receiving module is designed by switching control of perfume-injection nozzles which are able to give the signal receiving to the CP-called user through a special kind of smell according to the CP-calling user. The visual signal receiving module is made by motion control of DC-motored wheel-based system which can inform the CP-called user of the signal receiving through a desired motion according to the CP-calling user. In this paper, a prototype system is developed far multi-emotional signal receiving modes of CP. We describe an overall structure of the system and provide experimental results of the functional modules.

안드로이드 기반 스마트폰 연동 심박변이도 추정 (Estimation of Heart Rate Variability with an Android Smart Phone Platform)

  • 김정환;신승원;김현태;윤태호;김경섭;이정환;엄광문
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.865-871
    • /
    • 2012
  • In this study, ambulatory electrocardiogram(ECG) signal and the rhythms of heart beats are visualized in terms of R-R intervals and Heart Rate Variability(HRV) in the environment of an android plaform. With this aim, Graphical User Interface(GUI) is implemented by executing multi-thread Java programming modules including ECG, heart-beats, tachogram and visualization unit. ECG signals are acquired in an android device by receiving the data from ambulatory ECG sensory system. Finite Impulse Response(FIR) filters are implemented to eliminate the baseline wandering noises contained in the ambulatory signals and DC-offset level in R-R interval data. With simulating the normal or stress emotional state of a subject, we can find the fact that HRV can be successfully estimated and visualized in an android smart phone platform.