• 제목/요약/키워드: Multi-Domain Problem

검색결과 131건 처리시간 0.023초

3차원 다영역 공간의 소음해석을 위한 파워흐름경계요소법 개발 (Development of Power Flow Boundary Element Method for 3-dimensional Multi-domain Noise Analysis)

  • 김종도;홍석윤;송지훈
    • 한국소음진동공학회논문집
    • /
    • 제21권10호
    • /
    • pp.967-974
    • /
    • 2011
  • The direct and indirect PFBEM(power flow boundary element method) for the treatment of the 3 dimensional multi-domain problems are proposed to predict the acoustic energy density in medium to high frequency ranges. In the proposed method, the equation is derived in a matrix form by considering coupled relationships of the power flow at the interface of given domains. The proposed method can successfully obtain the analytical solutions for the problems of coupled cubes and the small-scale reverberant chamber. Then the experiment is carried out to obtain STL(sound transmission loss) by using small-scale reverberant chamber and the results are compared with analysis results.

대규모 자유도 문제의 구조해석을 위한 병렬 알고리즘 (A Parallel Algorithm for Large DOF Structural Analysis Problems)

  • 김민석;이지호
    • 한국전산구조공학회논문집
    • /
    • 제23권5호
    • /
    • pp.475-482
    • /
    • 2010
  • 본 논문에서는 대규모 자유도 시스템의 병렬처리를 위하여 2단계로 이루어진 영역분할법(Domain Decomposition Method) 기반의 병렬 알고리즘을 제안하였다. 분할된 영역의 내부 및 외부 경계를 상위영역문제로 정의하고 국부영역문제는 변위 경계조건이 모두 주어지는 분할영역에서의 Dirichlet 문제로 구성한다. 상위영역에서는 전체 상위영역에 대한 강성 행렬의 어셈블이 필요없는 반복법을 통하여 변위를 구하고, 이를 바탕으로 국부영역에서 Multi-Frontal Sparse Solver (MFSS)를 이용하여 변위를 계산한다. 상위영역문제의 연산에서 프로세서 간의 데이터 교환을 최소화하여 계산효율을 유지하며, 동시에 해석 가능한 자유도를 증대시키는 병렬 PCG(Preconditioned Conjugate Gradient)법 기반의 알고리즘을 개발하였다. 제안된 알고리즘을 적용하여 수치해석을 수행한 결과, 프로세서 수가 증가할수록 계산성능의 손실없이 해석 가능한 자유도가 비례하여 증가하는 선형 확장성을 관찰할 수 있었으며, 대규모 자유도 문제에 효과적으로 사용 가능함을 확인하였다.

Vickrey 경매에 기초한 다중 에이전트 시스템에서의 작업 재할당 (Task Reallocation in Multi-agent Systems Based on Vickrey Auctioning)

  • 김인철
    • 정보처리학회논문지B
    • /
    • 제8B권6호
    • /
    • pp.601-608
    • /
    • 2001
  • The automated assignment of multiple tasks to executing agents is a key problem in the area of multi-agent systems. In many domains, significant savings can be achieved by reallocating tasks among agents with different costs for handling tasks. The automation of task reallocation among self-interested agents requires that the individual agents use a common negotiation protocol that prescribes how they have to interact in order to come to an agreement on "who does what". In this paper, we introduce the multi-agent Traveling Salesman Problem(TSP) as an example of task reallocation problem, and suggest the Vickery auction as an interagent negotiation protocol for solving this problem. In general, auction-based protocols show several advantageous features: they are easily implementable, they enforce an efficient assignment process, and they guarantce an agreement even in scenarios in which the agents possess only very little domain-specific Knowledge. Furthermore Vickrey auctions have the additional advantage that each interested agent bids only once and that the dominant strategy is to bid one′s true valuation. In order to apply this market-based protocol into task reallocation among self-interested agents, we define the profit of each agent, the goal of negotiation, tasks to be traded out through auctions, the bidding strategy, and the sequence of auctions. Through several experiments with sample multi-agent TSPs, we show that the task allocation can improve monotonically at each step and then finally an optimal task allocation can be found with this protocol.

  • PDF

다채널 주파수영역 독립성분분석에서 분리된 신호 전력비의 공분산을 이용한 주파수 빈 정렬 (Frequency Bin Alignment Using Covariance of Power Ratio of Separated Signals in Multi-channel FD-ICA)

  • 전성일;배건성
    • 말소리와 음성과학
    • /
    • 제6권3호
    • /
    • pp.149-153
    • /
    • 2014
  • In frequency domain ICA, the frequency bin permutation problem falls off the quality of separated signals. In this paper, we propose a new algorithm to solve the frequency bin permutation problem using the covariance of power ratio of separated signals in multi-channel FD-ICA. It makes use of the continuity of the spectrum of speech signals to check if frequency bin permutation occurs in the separated signal using the power ratio of adjacent frequency bins. Experimental results have shown that the proposed method could fix the frequency bin permutation problem in the multi-channel FD-ICA.

다중 에이전트 기반 지식 탐사 및 문제 해결 프레임워크 (Multi-Agent Knowledge Discovery and Problem Solving Framework)

  • 강성희;박승수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.101-103
    • /
    • 1999
  • Decentralized 정보는 여러 도메인에 대한 heterogeneous한 독립적인 정보가 자율적으로 존재하며 이들 정보간의 관계성의 고려한 전체에 대한 global view가 존재하지 않기 때문에 inter-domain에 대한 마이닝을 수행하는데 어려움이 있다. 본 연구에서는 intra-domain knowledge discovery, intra 및 inter-domain problem solving method라는 접근방법으로, decentralized 데이터 환경에서 문제 해결에 필요한 정보 추출을 위한 데이터 tailoring과 분산 데이터에 대한 목표-지향 데이터마이닝(goal-oriented data-mining)을 통해 문제 해결을 위해 필요한 지식을 생성하고 이들 간의 관련 정보를 탐색하여 문제를 해결하는 프레임워크를 제안한다. 특히, 생성된 지식간의 협동 문제 처리를 멀티 에이전트 패러다임을 이용하기로 한다. 제안 프레임워크는 산재되어 있는 데이터들로부터 문제 해결에 유용한 지식 차원의 정보를 추출해내고 생성된 지식을 바탕으로 각 도메인 정보에 대한 개별적인 사용뿐 만 아니라 서로 cooperation을 통한 문제 해결을 지원함으로써, 개방된 분산 환경하에 decentralized 되어 있는 여러 도메인 정보를 보다 효율적으로 활용할 수 있는 새로운 형태의 문제 해결 방법이라고 할 수 있다.

  • PDF

경계면 처리 개선을 통한 다중해상도 유동해석 기법 개선 연구 (IMPROVEMENT OF FLOW SIMULATIONS METHOD WITH MULTI-RESOLUTION ANALYSIS BY BOUNDARY TREATMENT)

  • 강형민
    • 한국전산유체공학회지
    • /
    • 제20권4호
    • /
    • pp.44-50
    • /
    • 2015
  • The computational efficiency of flow simulations with Multi-resolution analysis (MRA) was enhanced via the boundary treatment of the computational domain. In MRA, an adaptive dataset to a solution is constructed through data decomposition with interpolating polynomial and thresholding. During the decomposition process, the basis points of interpolation should exceed the boundary of the computational domain. In order to resolve this problem, the weight coefficients of interpolating polynomial were adjusted near the boundaries. By this boundary treatment, the computational efficiency of MRA was enhanced while the numerical accuracy of a solution was unchanged. This modified MRA was applied to two-dimensional steady Euler equations and the enhancement of computational efficiency and the maintenance of numerical accuracy were assessed.

Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Steel and Composite Structures
    • /
    • 제35권3호
    • /
    • pp.343-351
    • /
    • 2020
  • The present research deals with the multi-dual-phase-lags thermoelasticity theory for thermoelastic behavior of transversely isotropic thermoelastic thin circular plate The Laplace and Hankel transform techniques have been used to find the solution of the problem. The displacement components, stress components, and conductive temperature distribution are computed in the transformed domain with the radial distance and further determined in the physical domain using numerical inversion techniques. The effect of rotation and two temperature are depicted graphically on the resulting quantities.

Orthotropic magneto-thermoelastic solid with multi-dual-phase-lag model and hall current

  • Lata, Parveen;Himanshi, Himanshi
    • Coupled systems mechanics
    • /
    • 제10권2호
    • /
    • pp.103-121
    • /
    • 2021
  • The present research deals with the investigation of the effect of hall current in an orthotropic magneto-thermoelastic medium with two temperature in the context of multi-phase-lag heat transfer due to thermomechanical sources. The bounding surface is subjected to linearly distributed and concentrated loads(mechanical and thermal source).Laplace and Fourier transform techniques are used to solve the problem. The expressions for displacement components,stress components and conductive temperature are derived in transformed domain and furtherin physical domain with the help of numerical inversion techniques. The effect ofrotation and hall parameter hasshown with the help of graphs.

A study on estimating the interlayer boundary of the subsurface using a artificial neural network with electrical impedance tomography

  • Sharma, Sunam Kumar;Khambampati, Anil Kumar;Kim, Kyung Youn
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.650-663
    • /
    • 2021
  • Subsurface topology estimation is an important factor in the geophysical survey. Electrical impedance tomography is one of the popular methods used for subsurface imaging. The EIT inverse problem is highly nonlinear and ill-posed; therefore, reconstructed conductivity distribution suffers from low spatial resolution. The subsurface region can be approximated as piece-wise separate regions with constant conductivity in each region; therefore, the conductivity estimation problem is transformed to estimate the shape and location of the layer boundary interface. Each layer interface boundary is treated as an open boundary that is described using front points. The subsurface domain contains multi-layers with very complex configurations, and, in such situations, conventional methods such as the modified Newton Raphson method fail to provide the desired solution. Therefore, in this work, we have implemented a 7-layer artificial neural network (ANN) as an inverse problem algorithm to estimate the front points that describe the multi-layer interface boundaries. An ANN model consisting of input, output, and five fully connected hidden layers are trained for interlayer boundary reconstruction using training data that consists of pairs of voltage measurements of the subsurface domain with three-layer configuration and the corresponding front points of interface boundaries. The results from the proposed ANN model are compared with the gravitational search algorithm (GSA) for interlayer boundary estimation, and the results show that ANN is successful in estimating the layer boundaries with good accuracy.

Auxiliary domain method for solving multi-objective dynamic reliability problems for nonlinear structures

  • Katafygiotis, Lambros;Moan, Torgeir;Cheungt, Sai Hung
    • Structural Engineering and Mechanics
    • /
    • 제25권3호
    • /
    • pp.347-363
    • /
    • 2007
  • A novel methodology, referred to as Auxiliary Domain Method (ADM), allowing for a very efficient solution of nonlinear reliability problems is presented. The target nonlinear failure domain is first populated by samples generated with the help of a Markov Chain. Based on these samples an auxiliary failure domain (AFD), corresponding to an auxiliary reliability problem, is introduced. The criteria for selecting the AFD are discussed. The emphasis in this paper is on the selection of the auxiliary linear failure domain in the case where the original nonlinear reliability problem involves multiple objectives rather than a single objective. Each reliability objective is assumed to correspond to a particular response quantity not exceeding a corresponding threshold. Once the AFD has been specified the method proceeds with a modified subset simulation procedure where the first step involves the direct simulation of samples in the AFD, rather than standard Monte Carlo simulation as required in standard subset simulation. While the method is applicable to general nonlinear reliability problems herein the focus is on the calculation of the probability of failure of nonlinear dynamical systems subjected to Gaussian random excitations. The method is demonstrated through such a numerical example involving two reliability objectives and a very large number of random variables. It is found that ADM is very efficient and offers drastic improvements over standard subset simulation, especially when one deals with low probability failure events.