• 제목/요약/키워드: Multi-Cylinder Engine

검색결과 65건 처리시간 0.022초

다기통 전기점화기관의 혼합기 불균일화가 사이클 변동에 미치는 영향 (I) (Effect of Non-Uniform Mixture on Cycle Fluctuation of Multi-Cylinder Spark Ignition Engine(I))

  • 송재학;이용길;박경석;양옥룡
    • 대한기계학회논문집
    • /
    • 제16권9호
    • /
    • pp.1736-1743
    • /
    • 1992
  • 본 연구에서는 기화기부착 4행정 4기통 전기점화기관을 사용하여 흡기관내 액 막흐름에 의한 연료의 불균일화가 기관의 연소특성과 배기특성에 미치는 영향을 규명 하는데 궁극적인 목적을 두고 우선, 연소특성을 해석하기 위하여 비교적 고가인 연소 해석 시스템을 개발하는데 1차적인 목적으로 하였으며, 시험제작한 연소해석 시스템으 로 액막흐름의 가시화 및 배기가스 농도측정과 지압선도 해석을 행하여 구조적으로 대 칭인 1번과 4번 실린더의 연소특성과 배기특성을 비교 검토하였다.

Multi-cavity Piston에 의한 바이오디젤유의 연소성 향상에 관한 연구 (The Study for Improving the Combustion of Biodiesel Fuel using Multi-cavity Piston)

  • 방중철;김용재;박철환
    • 한국연소학회지
    • /
    • 제20권4호
    • /
    • pp.26-33
    • /
    • 2015
  • American NREL (National Renewable Energy Laboratory) reported that BD20 could reduce PM, CO, SOx and cancerogenic matters by 13.6%, 9.3%, 17.6% and 13% respectively, compared to diesel fuel. BD20 has been being tested on garbage trucks and official vehicles at Seoul City, which is positive on air environment, but negative on combustion by higher viscosity in winter season. This study investigated the combustion characteristics by employing multi cavity piston for improving the deterioration of combustibility caused by the higher viscosity of the biodiesel fuel such as BD20 with the combustion flames taken by a high speed camera and the cylinder pressure diagram. A 4-cycle single cylinder diesel engine was remodeled to a visible 2-cycle engine for taking the flame photographs, which has a common-rail injection system. The test was done at laboratory temperature of about $4{\sim}5^{\circ}C$.

4실린더 4사이클 가솔린 기관에서 EGR율이 기관성능 및 유해배출물에 미치는 영향에 관한 연구 (A Study on the Effects of EGR ratio on Engine Performance and Emission in a 4 Cylinder 4 Cycle Gasoline Engine)

  • 김태훈;조진호
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.3-15
    • /
    • 1993
  • A multi-cylinder four cycle spark ignition engine equipped with on exhaust gas recirculation(EGR) system to reduce nitric oxide emission and to improve fuel consumption rate has been comprehensively simulated In a computer program including intake and exhaust manifolds. To achieve these goals, this program was tested against experiments performed on a standard production four cylinder four cycle gasoline engine with EGR system. As EGR rate Increased, the maximum temperature of combustion chamber and NO omission concentration decreased under each driving condition. But the emission concentration of CO didn't change much through whole district in spite of the increase of EGR rate. Fuel consumption rate improved under each driving condition according to the increased of EGR rate until 10 percent EGR rate. Therefore the degree of EGR depend not only on the NO emission but also on the economy and the engine performance criteria of the engine.

  • PDF

흡기계의 동적효과가 기관성능에 미치는 영향 (The dynamic effects of intake system on the engine performance)

  • 조진호;김병수
    • 오토저널
    • /
    • 제9권3호
    • /
    • pp.85-93
    • /
    • 1987
  • The intake system of 4-cycle, 4-cylinder reciprocating engine is investigated the simple model composed of vessel, duct and throttling part. The numerical calculation based on the simulation is performed for the flow phenomena including heat transfer, friction and bend of duct at each part. In the multi-cylinder engine, the volumetric efficiency is increased a little as the junction location is closed to cylinder at the engine speed having maximum volumetric efficiency. The configuration and dimension of intake system have an influence on the inertia effect by resistance and pressure variation, and the magnitude of that is varied by the engine speed. Thus the volumetric efficiency is correlative to them. The volumetric efficiency is high as the intake valve close is advanced at the low engine speed, and is delayed at high speed.

  • PDF

선박용 엔진 프레임 박스의 구조해석을 위한 기구학적 분석 (Kinematic Study for the Structural Analysis of the Frame Box of Vessel Engines)

  • 이재훈;최종호;조진래;이인수
    • 한국전산구조공학회논문집
    • /
    • 제20권5호
    • /
    • pp.565-572
    • /
    • 2007
  • 본 논문에서는 S60MC-C 선박용 다실린더 엔진의 구조해석을 위한 기구학적인 분석에 대해 서술하였다. 구조해석을 위해 프레임박스에 작용하는 측력과 크랭크 저널베어링에 작용하는 반력이 필요하다. 각각의 동적인 작용력을 구하기 위해, 선박용 엔진 내부의 구동부를 마찰이 없는 평판의 운동으로 가정하고, 단실린더에 대해 동역학적인 평형관계를 이용하여 엔진 구동시의 크랭크 각도별 작용력을 구하였다. 단실린더에서의 하중조건을 바탕으로 특정 시점에서 각각의 실린더에 작용하는 하중을 구하기 위해 크랭크암의 각도의 차이를 이용하였다. 구조해석을 위해 프레임박스의 응력 변화에 큰 영향을 줄 것으로 판단되는 8개의 각도를 선정하였다.

실린더 압력을 이용한 SI엔진의 페루프 점화시기 제어에 관한 연구 (SI Engine Closed-loop Spark Advance Control Using Cylinder Pressure)

  • 박승범;윤팔주;선우명호
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2361-2370
    • /
    • 2000
  • The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a control strategy of spark advance based upon cylinder pressure of spark ignition engines. A location of peak pressure(LPP) is the major parameter for controlling the spark timing, and also the UP is estimated, using a multi-layer feedforward neural network, which needs only five pressure sensor output voltage samples at -40˚, -20˚, 0˚, 20˚, 40˚ after top dead center. The neural network plays an important role in mitigating the A/D conversion load of an electronic engine controller by increasing the sampling interval from 10 crank angle(CA) to 20˚ CA. A proposed control algorithm does not need a sensor calibration and pegging(bias calculation) procedure because the neural network estimates the UP from the raw sensor output voltage. The estimated LPP can be regarded as a good index for combustion phasing, and can also be used as an MBT control parameter. The feasibility of this methodology is closely examined through steady and transient engine operations to control individual cylinder spark advance. The experimental results have revealed a favorable agreement of individual cylinder optimal combustion phasing.

흡기관 복합공진을 위한 기관의 시뮬레이션 연구 (A Study on the Multi-Tuning for Intake Manifold Using Engine Simulation)

  • 이응석
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3315-3325
    • /
    • 1994
  • To study the variation of charging efficiency in the engine intake, the method to change the natural frequency of intake system using the intake control valve was studied and it has been used in actual engine to increase the intake air. In this paper, the method of characteristics was used to analyze the non-steady state and compared with the experimental data of the 6-cylinder diesel engine showing the effectiveness of the method theoretically.

가변 흡기시스템에 의한 디젤기관의 체적효율 향상에 관한 연구 (A Study on the Amelioration of Volumetric Efficiency by Variable Induction System in a Diesel Engine)

  • 강희영
    • 동력기계공학회지
    • /
    • 제10권1호
    • /
    • pp.12-18
    • /
    • 2006
  • A three-degree of freedom model of intake system was contrived and investigated in various ways for the purpose of the amelioration of the volumetric efficiency in a low and transient engine speed for a multi cylinder diesel engine. The basic concept beyond this model started from the theory that each degree of freedom model has volumetric efficiency peak as many as its number of the degree of freedom. The volumetric efficiency affects significantly to the engine performance; torque characteristics, fuel economy and emission level. For commercial vehicles and stationary engines, the engine is designed so as to produce their best performance near the normal engine speeds, thus the low engine speed area has a tendency of poor volumetric efficiency. The aim of this study was highlighted on the amelioration of volumetric efficiency of low engine speed area in a multi cylinder diesel engine matched with an additional Helmholtz resonator. By the use of VIS(variable induction system) volumetric efficiency at low engine speed range was significantly improved. The availability of control by combination of VIS and CIS(conventional induction system) will be proposed as a variable induction system that would be an appropriate model for amelioration of the volumetric efficiency at low engine speed.

  • PDF

분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향 (The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion)

  • 국상훈;공장식;박세익;배충식;김장헌
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

가솔린 직분사식 불꽃점화기관에서 연료 분사 방향이 혼합기 형성에 미치는 영향에 관한 수치적 연구 (Numerical Study on the Effect of Injection Direction on Mixture Formation Characteristics in DISI Gasoline Engine)

  • 김태훈;박성욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.101-102
    • /
    • 2014
  • Rising oil price and environmental problems are causing automotive industry to increase fuel efficiency. Improved fuel efficiency in gasoline engine was made possible by development of DISI gasoline engine. Since fuel is injected inside cylinder directly, in-cylinder temperature can be reduced than multi-port injection engine and this leads to increased compression ratio. However, engine performance is largely dependent on mixture formation process due to in-cylinder fuel injection. Especially for spray guided and air guided DISI gasoline engine, injection direction is important factor to mixture preparation. It is because interaction between intake flow and spray affect fuel-air mixture. Hence, in this study, mixture formation characteristics were analyzed by varying injection direction using KIVA 3V release2 code. Residual gas was considered for assuming combustion. Therefore, initial condition for in-cylinder temperature was set equal to the end state of exhaust stroke of combustion cycle. Since angle between intake air flow direction and spray direction affects fluid flow and evaporation field, mixture distribution was affected by fuel injection direction dominantly.

  • PDF