• Title/Summary/Keyword: Multi-Conductors

Search Result 57, Processing Time 0.024 seconds

Study on Via hole formation in multi layer MCM-D substrate using photosensitive BCB (감광성 BCB를 사용한 다층 MCM-D 기판에서 비아홀 형성에 관한 연구)

  • 주철원;최효상;안용호;정동철;김정훈;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.99-102
    • /
    • 2000
  • Via for achieving reliable fabrication of MCM-D substrate was formed on the photosensitive BCB layer. MCM-D substrate consists of photosensitive BCB(Benzocyclobutene) interlayer dielectric and copper conductors. In order to form the vias in photosensitive BCB layer, the process of BCB and plasme etch using $C_2$F$_{6}$ gas were evaluated. The thickness of BCB after soft bake was shrunk down to 60% of the original. AES analysis was done on two vias, one is etched in $C_2$F$_{6}$ gas and the other is non etched. On via etched in $C_2$F$_{6}$, native C was detected and the amount of native C was reduced after Ar sputter. On via non etched in $C_2$F$_{6}$, organic C was detected and amount of organic C was reduced a little after Ar sputter. As a result of AES, BCB residue was not removed by Ar sputter, so plasma etch is necessary for achieving reliable via.ble via.

  • PDF

Effect of CORC former and striation on magnetization loss

  • Myeonghee Lee;Byeong-Joo Kim;Miyeon Yoon;Kyeongdal Choi;Ji-Kwang Lee;Woo-Seok Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.45-49
    • /
    • 2023
  • CORC, which is being studied as one of the conductors for large currents, is manufactured by symmetrically arranging several strands of high-temperature superconducting wires on a cylindrical former. It allows current to flow evenly between wires and has the advantage of being manufactured in a multi-layer structure to increase current capacity. In order to apply CORC to AC power devices, it is necessary to review the material of the former, which is the frame around which the superconducting wire is wound. In the case of metal formers, they are difficult to apply because eddy currents are generated in the former, and they do not have the flexibility to be manufactured into coils by winding them with CORC. In this paper, we compare and analyze the magnetization loss caused by an external alternating magnetic field of Litz wire, which is being considered as a former material for CORC, with the results from formers made of other materials. In addition, we experimentally examine the effect of reducing magnetization loss due to an external magnetic field in CORC using a split wire made by dividing a high-temperature superconducting wire into two using an etching method, and in CORC made with a non-split wire.

A Modeling Optimization for Numerical Analysis of GPR in Multi-Grounding Systems (다중 접지계 GPR 수치 해석을 위한 최적 모델링 기법)

  • Lee, Jae-Bok;Chang, Sug-Hun;Myung, Sung-Ho;Cho, Yeon-Gyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1120-1131
    • /
    • 2006
  • This paper describes the numerical analysis techniques using the Combined Integration/Matrix Method to calculate ground potential rise which can be occurred in the various grounding systems. Combined Integration/Matrix Method is used to reduce the error and computation time with the analytical integration equation and the proper segmentaion of earth embedded conductor. To do it, optimal segmentaion method for the buried conductors is presented through error analysis which is capable of applying the practical scaled various grounding systems. The optimum length of segmented element is much co-related with the buried depth of grounding electrode and the maximum length of buried electrode. As a result, less 3 precent errors was obtained by proposed model. The proposed model is applied to verify an effect of multi-grounding problems which was aroused much controversy with separated or common grounding between the high power grounding system and low power grounding system such as signal and telecommunication grounding.

Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data

  • Elawady, Amal;Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.71-88
    • /
    • 2018
  • At the University of Western Ontario (UWO), numerical tools represented in semi-closed form solution for the conductors and finite element modeling of the lattice tower were developed and utilized significantly to assess the behavior of transmission lines under downburst wind fields. Although these tools were validated against other finite element analyses, it is essential to validate the findings of those tools using experimental data. This paper reports the first aeroelastic test for a multi-span transmission line under simulated downburst. The test has been conducted at the three-dimensional wind testing facility, the WindEEE dome, located at the UWO. The experiment considers various downburst locations with respect to the transmission line system. Responses obtained from the experiment are analyzed in the current study to identify the critical downburst locations causing maximum internal forces in the structure (i.e., potential failure modes), which are compared with the failure modes obtained from the numerical tools. In addition, a quantitative comparison between the measured critical responses obtained from the experiment with critical responses obtained from the numerical tools is also conducted. The study shows a very good agreement between the critical configurations of the downburst obtained from the experiment compared to those predicted previously by different numerical studies. In addition, the structural responses obtained from the experiment and those obtained from the numerical tools are in a good agreement where a maximum difference of 16% is found for the mean responses and 25% for the peak responses.

Effect of motion path of downburst on wind-induced conductor swing in transmission line

  • Lou, Wenjuan;Wang, Jiawei;Chen, Yong;Lv, Zhongbin;Lu, Ming
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.211-229
    • /
    • 2016
  • In recent years, the frequency and duration of supply interruption in electric power transmission system due to flashover increase yearly in China. Flashover is usually associated with inadequate electric clearance and often takes place in extreme weathers, such as downbursts, typhoons and hurricanes. The present study focuses on the wind-induced oscillation of conductor during the process when a downburst is passing by or across a specified transmission line. Based on a revised analytical model recently developed for stationary downburst, transient three-dimensional wind fields of moving downbursts are successfully simulated. In the simulations, the downbursts travel along various motion paths according to the certain initial locations and directions of motion assumed in advance. Then, an eight-span section, extracted from a practical 500 kV ultra-high-voltage transmission line, is chosen. After performing a non-linear transient analysis, the transient displacements of the conductors could be obtained. Also, an extensive study on suspension insulator strings' rotation angles is conducted, and the electric clearances at different strings could be compared directly. The results show that both the variation trends of the transient responses and the corresponding peak values vary seriously with the motion paths of downburst. Accordingly, the location of the specified string, which is in the most disadvantageous situation along the studied line section, is picked out. And a representative motion path is concluded for reference in the calculation of each string's oscillation for the precaution of wind-induced flashover under downburst.

Design, Fabrication and Evaluation of a Conduction Cooled HTS Magnet for SMES (SMES용 전도냉각형 고온초전도 자석의 설계, 제작 및 평가)

  • Bae, Joon-Han;Kim, Hae-Jong;Seong, Ki-Chul
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • This paper describes design, fabrication, and evaluation of the conduction cooled high temperature superconducting (HTS) magnet for superconducting magnetic energy storage (SMES). The HTS magnet is composed of twenty-two of double pancake coils made of 4-ply conductors that stacked two Bi-2223 multi-filamentary tapes with the reinforced brass tape. Each double pancake coil consists of two solenoid coils with an inner diameter of 500 mm, an outer diameter of 691 mm, and a height of 10 mm. The aluminum plates of 3 mm thickness were arranged between double pancake coils for the cooling of the heat due to the power dissipation in the coil. The magnet was cooled down to 5.6 K with two stage Gifford McMahon (GM) cryocoolers. The maximum temperature at the HTS magnet in discharging mode rose as the charging current increased. 1 MJ of magnetic energy was successfully stored in the HTS magnet when the charging current reached 360A without quench. In this paper, thermal and electromagnetic behaviors on the conduction cooled HTS magnet for SMES are presented and these results will be utilized in the optimal design and the stability evaluation for conduction cooled HTS magnets.

Thickness Evaluation of the Aluminum Using Pulsed Eddy Current (펄스 와전류를 이용한 알루미늄 두께 평가)

  • Lee, Jeong-Ki;Suh, Dong-Man;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.15-19
    • /
    • 2005
  • Conventional eddy current testing has been used for the detection of the defect-like fatigue crack in the conductive materials, such as aluminum, which uses a sinusoidal signal with very narrow frequency bandwidth, Whereas, the pulsed eddy current method uses a pulse signal with a broad bandwidth. This can allow multi-frequency eddy current testing, and the penetration depth is greater than that of the conventional eddy current testing. In this work, a pulsed eddy current instrument was developed for evaluating the metal loss. The developed instrument was composed of the pulse generator generating the maximum square pulse voltage of 40V, an amplifier controlled up to 52dB, an A/D converter of 16 bit and the sampling frequency of 20 MHz, and an industrial personal computer operated by the Windows program. A pulsed eddy current probe was designed as a pancake type in which the sensing roil was located inside the driving roil. The output signals of the sensing roil increased rapidly wich the step pulse driving voltage かn off, and the latter part of the sensing coil output voltage decreased exponentially with time. The decrement value of the output signals increased as the thickness of the aluminum test piece increased.