• 제목/요약/키워드: Multi-Blade

검색결과 211건 처리시간 0.025초

다단 축류 압축기 정익 흡입면에서의 비정상 경계층 유동 특성 (Flow Characteristics in Unsteady Boundary Layer on Stator Blade of Multi-Stage Axial Compressor)

  • 신유환;;김광호
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1210-1218
    • /
    • 2004
  • Experimental study was performed to investigate the flow behavior in boundary layer on the blade suction surface of a multi-stage axial flow compressor, which was focused on the third stage of the 4-stage Low Speed Research Compressor. Flow measurements in the boundary layer were obtained using a boundary layer hot wire probe, which was traversed normal to the blade suction surface at small increments by the probe traverse specially designed. Detailed boundary layer flow measurements covering most of the stator suction surface were taken and are described using time mean and ensemble averaged velocity profiles. Amplitude of the velocity fluctuation and turbulence intensity in the boundary layer flow are also discussed. At midspan, narrow but strong wake zone due to passing wake disturbances is generated in the boundary layer near the blade leading edge for the rotor blade passing period. Corner separation is observed at the tip region near the trailing edge, which causes to increase steeply the boundary layer thickness.

다익송풍기 내부 3차원 정상유동의 수치해석 (Analysis of the three-dimensional Steady Flow through A Multi-blade Centrifugal Fan)

  • 서성진;첸시;김광용;강신형
    • 한국유체기계학회 논문집
    • /
    • 제3권1호
    • /
    • pp.19-27
    • /
    • 2000
  • A numerical study is presented for analysis of three-dimensional incompressible turbulent flows in a multi-blade centrifugal fan. Reynolds-averaged Navier-Stokes equations with a standard $k-{\espilon}$ turbulence model are discretized with finite volume approximations. The computational area is divided into three blocks; inlet core, impeller and scroll parts, which are linked by a multi-block method. The flow inside of the fan is regarded as steady flow, and the mathematical models for the impeller forces were established from a cascade theory and measured data. Empirical coefficients are obtained comparing between computational and experimental results for the case without scroll, and are employed to simulate the flow through the impeller with scroll. In comparisons with experimental data, the validity of the mathematical models for the impeller forces was examined. The characteristics of the flow in the scroll were also discussed.

  • PDF

무인비행체 블레이드 형상 변화에 따른 단일로터의 제자리 비행 추력성능 분석 (CFD-based Thrust Analysis of Unmanned Aerial Vehicle in Hover Mode: Effects of Single Rotor Blade Shape)

  • 윤재현;최하영;이종수
    • 대한기계학회논문집A
    • /
    • 제38권5호
    • /
    • pp.513-520
    • /
    • 2014
  • 무인비행체는 소형화, 경량화가 중요하기 때문에 동력장치에 한계가 있다. 공력성능을 향상을 위해 항공기의 크기나 무게에 영향을 주지 않는 블레이드의 형상의 변화를 주는 것이 가장 효율적이다. 본 연구에서는 제자리 비행을 하는 멀티로터 무인비행체에 있어 단일 로터 블레이드의 테이퍼 비율, 비틀림 각도 등에 따른 추력성능의 변화를 전산유동해석 시뮬레이션을 통해 수행하였다. 전산유동해석 코드인 ADINA-CFD 를 통해 얻은 수치 결과를 깃 요소 이론(blade element theory, BET)과 비교하였으며, 블레이드의 형상 변화가 추력성능에 영향을 미치는 것을 확인하였다.

회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 효율적인 슈퍼요소 구조진동해석 (Efficient Super-element Structural Vibration Analyses of a Large Wind-turbine Rotor Blade Considering Rotational and Aerodynamic Load Effects)

  • 김동만;김동현;박강균;김유성
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.651-658
    • /
    • 2009
  • In this study, computer applied engineering(CAE) techniques are fully used to efficiently conduct structural and dynamic analyses of a huge composite rotor blade using super-element. Computational fluid dynamics(CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade. Structural vibration analysis is conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results are presented for comparison and the structural dynamic behaviors of the rotor blade are investigated herein.

와이퍼 블레이드의 누름압 해석 (Contact Pressure Analysis of a Windshield Wiperblade)

  • 이병수;신진용
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.51-57
    • /
    • 2006
  • The contact pressure distribution between a rubber wiper blade and a glass windshield is a major factor for wiping performance. A modeling and simulation method has been developed to forecast the contact pressure distribution on a wiper blade. For modeling multi-body dynamics of an wiper linkage system and flexible nature of wiper blade, ADAMS and ADAMS/flex are employed. A simulation study has been also conducted to obtain contact pressure distribution. Comparison between simulation and measurement is provided to ensure fidelity of the model and the simulation method.

블레이드 진동측정을 위한 스트레인 게이지 설치위치 최적화 (Optimal Placement of Strain Gauge for Vibration Measurement for Fan Blade)

  • 최병근
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.819-826
    • /
    • 2004
  • A multi-step optimum strategy for the selection of the locations and directions of strain gauges is proposed in this paper to capture at best the modal response of blade in a series of modes on fan blades. It is consist of three steps including two pass reduction step, genetic algorithm and fine optimization to find the locations-directions of strain gauges. The optimization is based upon the maximum signal-to-noise ratio(SNR) of measured strain values with respect to the inherent system measurement noise, the mispositioning of the gauge in location and gauge failure. Optimal gauge positions for a fan blade is analyzed to prove the effectiveness of the multi-step optimum methodology and to investigate the effects of the considering parameters such as the mispositioning level, the probability of gauge failure, and the number of gauges on the optimal strain gauge position.

원심 다익홴의 유동에 대한 컷 오프 각도의 영향 (Effect of Cut-off Angle on Flow Pattern of Centrifugal Multi-blade Fan)

  • 강경준;신유환;이윤표;김광호
    • 한국유체기계학회 논문집
    • /
    • 제13권3호
    • /
    • pp.37-42
    • /
    • 2010
  • This study investigated on details of flow characteristics of a multi-blade fan for domestic ventilation. Experiments and analysis were carried out to describe on flow pattern with variations of cut-off angle near the scroll housing throat, which were performed by PIV measurement for the flow field and by total pressure probes. The stagnation point at cut-off region of the fan moves to the exit of the scroll housing as the cut-off angle increases. The movement of stagnation point and the variation of throat area of the scroll housing influence to the distribution of velocity magnitude at the exit of the fan. Furthermore, a large distortion of the velocity distribution at the scroll exit causes to increase mixing loss along the flow path.

연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석 (Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect)

  • 임하성;권성훈;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.912-918
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

회전하는 테이퍼 단면 다중 패킷 블레이드 시스템의 진동 해석 (Vibration Analysis of a Rotating Multi-Packet Blade System Having Tapered Cross Section)

  • 김민권;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.832-837
    • /
    • 2008
  • A modeling method for the modal analysis of a multi-packet blade system having tapered cross section undergoing rotational motion is presented in this paper. Blades are idealized as tapered cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters including tapered ratio and the number of packets as well as blades on the modal characteristics of the system are investigated with some numerical examples.

  • PDF

연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석 (Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect)

  • 임하성;권성훈;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1354-1359
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

  • PDF