• Title/Summary/Keyword: Multi-Band Antenna

Search Result 229, Processing Time 0.022 seconds

Broadband polarimetric Microstrip Antennas for Space-borne SAR

  • Hong, Lei;Qunying, Zhang;Guang, Fu
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.465-470
    • /
    • 2002
  • A novel phased array antenna system for space-borne polarimetric SAR is proposed and completed in this paper.The antenna system assures polarimetric and multi-mode capability of SAR. It has broadband, high polarization isolation and high port to port isolation. The antenna system is composed of broadband polarimetric microstrip antenna, T/R modules and multifunction beam controller nit. The polarimetric microstrip antenna has more than 100MHz bandwidth at L-band with -30dB polarization isolation and high port to port isolation. The microstrip element and T/R module's structure and characteristics, the subarray's performances measuring results are presented in detail in this paper. A design scheme on beam controller of the phased array antenna is also proposed and completed, which is based on Digital Signal Processing (DSP) chip -TMS320F206. This beam controller unit has small size and high reliability compared with general beam controller. In addition, the multifunction beam controller unit can acquire and then send the T/R module's working states to detection system in real time.

  • PDF

Top and Bottom Symmetrical Loop Antenna for Multi-media Devices (멀티미디어단말기용 상하대칭 루프 안테나)

  • Shin, Cheon-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.414-422
    • /
    • 2011
  • The paper is for top and bottom symmetrical phase controlled loop antenna using for multi-media devices. We developed a top and bottom phase control loop pattern arrangement methods for loop antenna in mobile devices like as a cell phone and PCS, WCDMA. In the loop antenna pattern, arrange close adhesive the loop antenna pattern $180^{\circ}$ cycle in wave length, the radiated electro-magnetic wave from close adhesive loop pattern in $180^{\circ}$ become to coherent wave than the phase controlled loop antenna has high efficiency and high radiation gain. To acquire a wide band width on phase controlled loop antenna, we arrange a top and bottom symmetrical architecture loop pattern that bas a $180^{\circ}$ wave length in each layer. Top and bottom each layer bas a U form pattern separated $90^{\circ}$ wave length each other. This architecture cause a well balanced electro-magnetic flow control that acquired wide bandwidth resonance response in loop pattern antenna. In experiment, we designed a WCDMA mobile multi-media antenna in $40mm{\times}6mm$ area thickness 0.2mm, in that passive experiment the radiation efficiency is over 50% and over 0dBi radiation average gain was acquired, in the active experiment in real multi-media device we acquired -4dBi average gain and 43% transmit/receive efficiency.

Flight Demonstration Test of a Smart Skin Antenna for Communication and Navigation (통신 항법용 스마트 스킨 안테나의 비행데모시험)

  • Kim, Min-Sung;Park, Chan-Yik;Cho, Chang-Min;Yoon, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.567-575
    • /
    • 2014
  • This paper suggests an installation procedure of a smart skin prototype into an aircraft, flight demonstration test procedures and test results. Four communication and navigation antennas are embedded into one Conformal Load-bearing Antenna Structure(CLAS). Log periodic patch type antenna was designed as a multi-band antenna to cover four antenna frequency bands. The requirements of CLAS were verified by ground tests before aircraft installation. A CLAS speed-brake was installed into KT-1 aircraft and performances of dual antennas were verified as multi-antenna tests on the ground. Electromagnetic compatibility tests were conducted to check compatibility between the CLAS and all existing equipments. Flight demonstration tests were conducted by one sortie of flight test for one antenna. The activeness and continuity of communication and navigation signal during the flight, null area of antenna signal along the circling flight were monitored. The embedded antennas worked better than expected during four sorties of flight tests.

Waveguide Slot Array Antenna for Heliborne MTD Radar (헬리콥터 탑재 MTD 레이다용 도파관 슬롯배열 안테나)

  • Kim Dong-Seok;Han In-Hee;Gwak Young-Gil;Shin Keun-Sup
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.139-142
    • /
    • 2004
  • X-band Waveguide slot way antenna is developed for heliborne MTD radar applications. The antenna is composed of multi-layer waveguide structures. Each of them has it's own functions, such as, radiation, power/phase distribution, coupling, etc. Broad-wall offset slots are used for radiators, inclined slots on broad-wall for power distribution to radiating(branch) waveguide, some kind of coaxial probe structures for in-phase coupling and H-plane T-junction power dividers. Antenna is realized by precision machining and careful assembly. It is tested and measured by 3m${\times}$l.7m planar near-field probe, which is set-up in MTG. Far-field calculations have good agreement in tolerable bounds. Special but necessary process such as brazing, will increase the accuracy and performance. Results show promising possibilities of future applications for real systems.

  • PDF

Development of Polarization-Controllable Active Phased Array Antenna for Receiving Satellite Broadcasting (편파가변 위성 방송 수신용 능동 위상 배열 안테나 개발)

  • Choi, Jin-Young;Lee, Ho-Seon;Kong, Tong-Ook;Chun, Jong-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.325-335
    • /
    • 2018
  • We herein present a study on the active phased array antenna for receiving satellite broadcasting that can electrically align its polarization to that of target transmitters in its moving condition or in the Skew angle arrangement of the broadcasting satellite receiver. Hence, we have developed an active phased array structure composed of the self-developed Vivaldi antenna and multifunction core (MFC) chip, receiving RF front end module, and control units. In particular, the new Vivaldi antenna designed in the Ku-band of 10.7 - 14.5 GHz to receive one desired polarization mode such as the horizontal or vertical by means of an MFC chip and other control units that can control the amplitude and phase of each antenna element. The test results verified that cross-polarization property is 20 dB or higher and the primary beam can be scanned clearly at approximately ${\pm}60^{\circ}$.

16-QAM OFDM-Based K-Band LoS MIMO Communication System with Alignment Mismatch Compensation

  • Kim, Bong-Su;Kim, Kwang-Seon;Kang, Min-Soo;Byun, Woo-Jin;Song, Myung-Sun;Park, Hyung Chul
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.535-545
    • /
    • 2017
  • This paper presents a novel K-band (18 GHz) 16-quadrature amplitude modulation (16-QAM) orthogonal frequency-division multiplexing (OFDM)-based $2{\times}2$ line-of-sight multi-input multi-output communication system. The system can deliver 356 Mbps on a 56 MHz channel. Alignment mismatches, such as amplitude and/or phase mismatches, between the transmitter and receiver antennas were examined through hardware experiments. Hardware experimental results revealed that amplitude mismatch is related to antenna size, antenna beam width, and link distance. The proposed system employs an alignment mismatch compensation method. The open-loop architecture of the proposed compensation method is simple and enables facile construction of communication systems. In a digital modem, 16-QAM OFDM with a 512-point fast Fourier transform and (255, 239) Reed-Solomon forward error correction codecs is used. Experimental results show that a bit error rate of $10^{-5}$ is achieved at a signal-to-noise ratio of approximately 18.0 dB.

Design of An Orthomode Transducer for Use in Multi-Band Antenna Feeds (다중 대역 안테나 피드용 직교모드 변환기 설계)

  • 황순미;김영민;이석곤;안병철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • In this paper, we present design results for an orthomode transducer(OMT) to be used in multi-band antenna feeds. The OMT is realized in the form of a tapered square waveguide, where 18-20 GHz ports are placed in the taper region normal to the waveguide axis, while 30-45 GHz ports are placed in line with the waveguide axis. The reflection coefficient of each port is designed to be less than 20 dB, while the isolation between ports are greater than 15 dB. Thin septa are placed in side ports to reduce the effect of side ports on the return loss of the in-line port. The commercial software HFSS? is used to design the whole structure.

A Study on the Intenna Based on PIFA with Multi Element (Mulit Element를 이용한 PIFA 구조의 Intenna에 관한 연구)

  • Lim, Yo-Han;Chang, Ki-Hun;Yoon, Young-Joong;Kim, Yong-Jin;Kim, Young-Eil;Yoon, Ick-Jae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.784-795
    • /
    • 2007
  • In this thesis, the Multi element antenna with wideband and enhanced gain characteristic is proposed to operate at both frequency range from 824 MHz to 896 11Hz for the CDMA and frequency range from 908.5 MHz to 914 MHz for the RFID band. The proposed antenna has tile size of $35{\times}15{\times}5mm^3$ in order to put it in the A model of S company and each element of the proposed antenna is folded to obtain the minimum size. To obtain the antenna with wideband and high gain characteristic, the radiator of the antenna is divided into 4 elements. As a result, bandwidth of the proposed antenna become broader and lower center frequency is appeared due to increased and lengthened current path. Moreover, the enhanced gain characteristic is verified because divided element structure that induct uniform current distribution can get increased antenna efficiency. To attain more uniform current distribution, modified structure of the feeding point that can deliver currents directly is designed. The antenna that alters the feeding structure has higher gain value. Each element is folded to increase the current paths considering the current directions to attain the miniaturization of the antenna. To measure the handset antenna, the handset case must be considered. Even though antenna is designed for predicted characteristic, the resonance frequency is shifted and antenna gain is deteriorated at predicted frequency while antenna is set in the handset case. 1.08 GHz of the resonant frequency is determined after frequency shift from 150 MHz to 200 MHz is confirmed and the maximum gain is measured as 3.1 dBi while antenna is not set in the handset. In case handset case is considered, the experimental results show that the impedance bandwidth for VSWR<2 is from 0.824 GHz to 0.936 GHz(110 MHz). This result appears that the proposed antenna can cover both CDMA and RFID band at once. The measured gain is from -3.4 dBi to -0.5 dBi and it has omni-directional pattern practically.

Aircraft Embedded Antenna Design for JTDLS Complete System (JTDLS 완성형 체계를 위한 항공기 내장형 안테나 설계)

  • Yeo, Su-Cheol;Kang, Byoung-Wook;Choi, Hyo-Gi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.451-456
    • /
    • 2020
  • In this paper, we studied the method of designing a embedded antenna for mounting on the JTDLS complete aircraft. The proposed antenna satisfies the MIDS-LVT operation frequency band and is designed as a broadband in consideration of expandability. As a result of the design, it was confirmed that the proposed antenna has similar electrical performance to the existing blade antenna and has broadband characteristics. As a result of EM analysis, the antenna was mounted on the top and bottom parts of the aircraft to check the mount of the aircraft, and it was confirmed that both the top and bottom parts had good radiation characteristics. The technology acquired through this study is judged to be applicable to the JTDLS completed aircraft.

A Circular Micro-Strip Patch Antenna Using a PBG (광 밴드 갭(Photonic Band Gap) 구조를 응용한 원형 마이크로스트립 패치 안테나)

  • Lee Bong-Geol;Jung Chun-Suk;Woo Jong-Woon;Ahn Sang-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1067-1074
    • /
    • 2005
  • Studied antenna's basic structure was circular micro-strip patch antenna. Bandwidth was broaden and back-radiation pattern was decreased because studied antenna had PBG on a ground for improvement in its defect which is skin-effects. And character of antenna according to different shape of PBG was observed. Finally, air-gap whose dielectric constant is lower than substrates was added between substrates sc respond frequency was higher despite small size antenna.