• 제목/요약/키워드: Multi-Axis

검색결과 563건 처리시간 0.027초

Servey and Analysis of Use Behavior in Children's Parks - Focused on Housing Development Area in Daegu - (어린이공원 이용행태 조사.분석 - 대구광역시 택지개발지구를 중심으로 -)

  • Kim Yong-Soo;Lee Dong-Hun;Park Chan-Yong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • 제34권3호
    • /
    • pp.32-40
    • /
    • 2006
  • We investigated space establishment and land use of children's parks by studying movement of users in and out of the parks with a questionnaire survey, video and analysis, and then analyzed the characteristics of how the facilities and the space of the parte are used. The results are as follows. First, when considering the character of the facilities of children's parks, entertainment facilities should receive priority followed by those for relaxation and those for convenience. When considering the position of facilities in the parks, because activity spaces may have similar functions to multi-purpose paved spaces, common use of these two spaces should be considered. Entrances and lines of movement should be kept in mind. Second, when considering the surrounding land uses, in case a play facility at a large-sized complex or an elementary school is adjacent, the exercise facilities may be more important, followed by play and rest facilities. In case there is a broad path around the parte, the way in which movement occurs into the central axis should be considered so that the other side of the broad way is not included in the children's play space. Third, proper control of roads adjacent to the parse is needed to protect children from danger.

Effect of CeO$_2$ buffer layer on the crystallization of YBCO thin film on Hastelloy substrate (비정질 금속 기판상에 증착된 YBCO 박막의 결정성에 대한 CEO$_2$ 완충막의 효과)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.392-396
    • /
    • 1999
  • Superconducting YBa$_2Cu_3O_{7-{\delta}}$(YBCO) thin films were grown on Hastelloy(Ni-Cr-Mo alloys) with CeO$_2$ buffer layer in-situ by pulsed laser deposition in a multi-target processing chamber. To apply superconducting property on power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to grow the YBCO films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting overlayers and non-crystallization of YBCO on amorphous substrate. It is necessary to use a buffer layer to overcome the difficulties. We have chosen CeO$_2$ as a buffer layer which has cubic structure of 5.41 ${\AA}$ lattice parameter and only 0.2% of lattice mismatch with 3.82 ${\AA}$ of a-axis lattice parameter of YBCO on [110] direction of CeO$_2$ In order to enhance the crystallization of YBCO films on metallic substrates, we deposited CeO$_2$ buffer layers with varying temperature and 02 pressure. By XRD, it is observed that dominated film orientation is strongly depending on the deposition temperature of CeO$_2$ layer. The dominated orientation of CeO$_2$ buffer layer is changed from (200) to(111) by increasing the deposition temperature and this transition affects the crystallization of YBCO superconducting film on CeO$_2$ buffered Hastelloy.

  • PDF

Miniaturized Half-Circular-Slot UWB Antenna Design (소형화된 반원형-슬롯 UWB 안테나의 설계)

  • Jang, Joon-Won;Choi, Kyoung;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제19권3호
    • /
    • pp.329-335
    • /
    • 2008
  • This paper proposes a miniaturized half-circular-slot UWB antenna. Using an analysis of the neld patterns, we show that the original circular-slot UWB antenna operates on a series of multi-pole radiation based on $TE_n$ modes, and a perfect magnetic wall exists along an axis of symmetry on the antenna. Using the perfect magnetic wall we designed and fabricated the miniaturized UWB antenna on RF-60A substrate with t=0.64mm, ${\varepsilon}_r=6.15\;and\;tan\;{\delta}=0.0025$, which not only has the half size of the original but also maintains UWB characteristics. The measured gain of the miniaturized antenna is $-2.1{\sim}4.3dBi$, which is comparable with the gain, $-2.7{\sim}3.1dBi$, of the original circular-slot UWB antenna. The radiation pattern is also similar to that of the original antenna.

Time Optimal Attitude Maneuver Strategies for the Agile Spacecraft with Reaction Wheels and Thrusters

  • Lee Byung-Hoon;Lee Bong-Un;Oh Hwa-Suk;Lee Seon-Ho;Rhee Seung-Wu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1695-1705
    • /
    • 2005
  • Reaction wheels and thrusters are commonly used for the satellite attitude control. Since satellites frequently need fast maneuvers, the minimum time maneuvers have been extensively studied. When the speed of attitude maneuver is restricted due to the wheel torque capacity of low level, the combinational use of wheel and thruster is considered. In this paper, minimum time optimal control performances with reaction wheels and thrusters are studied. We first identify the features of the maneuvers of the satellite with reaction wheels only. It is shown that the time-optimal maneuver for the satellite with four reaction wheels in a pyramid configuration occurs on the fashion of single axis rotation. Pseudo control logic for reaction wheels is successfully adopted for smooth and chattering-free time-optimal maneuvers. Secondly, two different thrusting logics for satellite time-optimal attitude maneuver are compared with each other: constant time-sharing thrusting logic and varying time-sharing thrusting logic. The newly suggested varying time-sharing thrusting logic is found to reduce the maneuvering time dramatically. Finally, the hybrid control with reaction wheels and thrusters are considered. The simulation results show that the simultaneous actuation of reaction wheels and thrusters with varying time-sharing logic reduces the maneuvering time enormously. Spacecraft model is Korea Multi-Purpose Satellite (KOMPSAT)-2 which is being developed in Korea as an agile maneuvering satellite.

Inhibition of MicroRNA-221 and 222 Enhances Hematopoietic Differentiation from Human Pluripotent Stem Cells via c-KIT Upregulation

  • Lee, Ji Yoon;Kim, MyungJoo;Heo, Hye-Ryeon;Ha, Kwon-Soo;Han, Eun-Taek;Park, Won Sun;Yang, Se-Ran;Hong, Seok-Ho
    • Molecules and Cells
    • /
    • 제41권11호
    • /
    • pp.971-978
    • /
    • 2018
  • The stem cell factor (SCF)/c-KIT axis plays an important role in the hematopoietic differentiation of human pluripotent stem cells (hPSCs), but its regulatory mechanisms involving microRNAs (miRs) are not fully elucidated. Here, we demonstrated that supplementation with SCF increases the hematopoietic differentiation of hPSCs via the interaction with its receptor tyrosine kinase c-KIT, which is modulated by miR-221 and miR-222. c-KIT is comparably expressed in undifferentiated human embryonic and induced pluripotent stem cells. The inhibition of SCF signaling via treatment with a c-KIT antagonist (imatinib) during hPSC-derived hematopoiesis resulted in reductions in the yield and multi-lineage potential of hematopoietic progenitors. We found that the transcript levels of miR-221 and miR-222 targeting c-KIT were significantly lower in the pluripotent state than they were in terminally differentiated somatic cells. Furthermore, suppression of miR-221 and miR-222 in undifferentiated hPSC cultures induced more hematopoiesis by increasing c-KIT expression. Collectively, our data implied that the modulation of c-KIT by miRs may provide further potential strategies to expedite the generation of functional blood cells for therapeutic approaches and the study of the cellular machinery related to hematologic malignant diseases such as leukemia.

A Parallel Mode Confocal System using a Micro-Lens and Pinhole Array in a Dual Microscope Configuration (이중 현미경 구조를 이용한 마이크로 렌즈 및 핀홀 어레이 기반 병렬 공초점 시스템)

  • Bae, Sang Woo;Kim, Min Young;Ko, Kuk Won;Koh, Kyung Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제19권11호
    • /
    • pp.979-983
    • /
    • 2013
  • The three-dimensional measurement method of confocal systems is a spot scanning method which has a high resolution and good illumination efficiency. However, conventional confocal systems had a weak point in that it has to perform XY axis scanning to achieve FOV (Field of View) vision through spot scanning. There are some methods to improve this problem involving the use of a galvano mirror [1], pin-hole array, etc. Therefore, in this paper we propose a method to improve a parallel mode confocal system using a micro-lens and pin-hole array in a dual microscope configuration. We made an area scan possible by using a combination MLA (Micro Lens Array) and pin-hole array, and used an objective lens to improve the light transmittance and signal-to-noise ratio. Additionally, we made it possible to change the objective lens so that it is possible to select a lens considering the reflection characteristic of the measuring object and proper magnification. We did an experiment using 5X, 2.3X objective lens, and did a calibration of height using a VLSI calibration target.

A Study on the Hierarchical Organization of the Exterior Space in the Multi-Family Housing Complexes in the Urban Area - By Analysing the Exterior Space in Korean Traditional Architecture - (도시 집합주거의 외부공간의 위계적인 구성방식에 관한 연구 - 한국 전통건축의 공간구성기법을 응용하여 -)

  • Park, Chang-Geun
    • Journal of Industrial Technology
    • /
    • 제26권A호
    • /
    • pp.29-38
    • /
    • 2006
  • Efficiency and universality which was the spirit of the modern age, had also an enfluence on our living environment. Various types of individual housing unit were developed and mass-produced. However, the exterior space in our city is a place for our social life and intermediate place to connect the private life of each individual to our society. For the people to adapt themselves well to their environment, it should be well organized which means it is clearly divided and integrated in a hierarchical order. To realize these conditions, adequate boundaries to divide each territory and entrances to connect each territory are two essential elements. One of the possible methods to realize these conditions can be found in korean traditional architecture where the exterior space has the same figural quality like buildings and is the center of the whole composition. Buildings, walls and colonnades are the elements to define space. Gates, pavilions, gabs between buildings and posts are the elements to symbolize the entrance connecting each space. Each exterior space is integrated to a whole composition. One is the gradual differentiation along the axis which is unique in korean traditional architecture. The other is the rectangular connection which is also found in the other area in the world. The results of this thesis are as follows. The exterior space in the housing area should have the figural quality. The elements to make boundaries defining exterior space are classified into horizontal elements such as low buildings and walls, and vertical elements such as tower-shape buildings which define space in a different way. The position of openings in a housing block affects the characteristic and openness of a exterior space. Various types of gates are used to decide the relationship between spaces.

  • PDF

A study for the establishment of analysis tool for the visible area of three dimensional space - Based on the Raster operation using 3D game engine - (다시점 가시영역 분석도구설정에 관한 기초연구 - 3D게임엔진을 이용한 래스터 연산방식을 중심으로 -)

  • Kim, Suk-Tae;Jun, Han-Jong
    • Korean Institute of Interior Design Journal
    • /
    • 제16권5호
    • /
    • pp.38-46
    • /
    • 2007
  • In the late 1970s, the method of quantitative and scientific space structural analysis based on graph theory was introduced to the process of space design, which arranges design and functional elements, as relying heavily on intuition could produce errors due to unverified experiences and prejudices of the designer. As the method of space analysis is complex and hard to express visually and requires repetitive operations, it was discussed theoretically only. However, with the development of computer performance and graphic in recent years, visualization became possible. But the method of visual structural analysis of space is at the level of two dimensions and it is not easy to get accurate data when it is applied to limited three dimensional space such as an interior space. For the visual structural analysis of space, this study presents 4 indices including visibility volume level, pure visibility connection frequency, effective visibility connection frequency, and path visibility connection frequency. This study also presents space division using three dimensional arrangement rather than the existing vector operation method and raytracing algorithm at the lattice constant. Based on this, an analysis tool for the visible regions of three dimensional space that is capable of evaluating at multiple points by using three dimensional game engine and presentation tool that allows the analyzer to interpret the data effectively is made. It is applied to 2 prototype models by displacing Z axis, and the results are compared with UCL Depthmap to verify the validity of data and evaluate its usefulness as a multidimensional, multi-view space analysis tool.

A COMPUTATIONAL STUDY ABOUT BEHAVIOR OF AN UNDERWATER PROJECTILE USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES (비정렬 격자계에서 균질혼합 모델을 이용한 수중 운동체의 거동에 관한 수치적 연구)

  • Jo, S.M.;Choi, J.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • 제21권3호
    • /
    • pp.15-23
    • /
    • 2016
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the underwater platform. Various flow conditions were considered to analyze the fluid-dynamics motion parameters of the projectile. The water level of platform and the current speed around the projectile were the main parametric variables. The numerical calculations were conducted up to 0.75sec in physical time scale. The dynamics tendency of the projectile was almost identical with respect to the water level variation due to the constant buoyancy term. The moving speed of the projectile along the vertical axis inside the platform decreased when the current speed increased. This is because the inflow from outside of the platform impeded development of the compressed air emitted from the floor surface of the launch platform. As a result, the fluid force acting on the lower surface of the projectile decreased, and injection time of the projectile from the platform was delayed.

Optimization of the Operating Stiffness of a Two-Axis Parallel Robot (2축 병렬로봇의 작동강성 최적설계)

  • Lee, Jae-Wook;Jang, Jin-Seok;Lee, Sang-Kon;Jeong, Myeong-Sik;Cho, Yong-Jae;Kim, Kun-Woo;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제39권6호
    • /
    • pp.561-566
    • /
    • 2015
  • In this paper, the operating stiffness of a parallel robot used to handle heavy packages is optimized. Because the studied model, called a "pick and place robot," is applied for packaging logistics, it is important for the robot to be lightweight so that it may respond rapidly and have high stiffness to allow sufficient operating precision. However, these two requirements of low weight and high stiffness are mutually exclusive. Thus, the dynamic characteristics of the robot are analyzed through multibody dynamics analysis, and topology optimization is conducted to achieve this exclusive performance. Lastly, the reliability of the topology optimization is verified by applying the optimized design to the parallel robot.