• 제목/요약/키워드: Multi zone

검색결과 539건 처리시간 0.027초

Evaluation of Hot Mix Asphalt Properties using Complex Modifiers (복합개질제를 이용한 아스팔트 혼합물의 물성 평가)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제19권5호
    • /
    • pp.146-152
    • /
    • 2018
  • In this study, to improve the performance of asphalt mixtures for plastic deformation occurring mainly in Korea, complex modifiers were prepared by mixing powders and liquid type modifiers. The main constituents were powdery diatomaceous earth, mica and carbon black, and liquid type solid 70% SBR latex. The tensile strength ratios for the two asphalt mixtures used in the test were above 0.80 for the Ministry of Land Transportation (2017) asphalt mixture production and construction guidelines. The effects of increasing the tensile strength in the dry state was more than 14% when the composite modifier was added. The deformation rate per minute by the wheel tracking test load was an average of 0.07 to 0.147 for each mixture. The strain rate per minute was improved by the modifier, and the dynamic stability was improved by almost 100% from 295 to 590. In addition, the final settling was reduced from 11.38 mm to 9.57 mm. A plastic deformation test using the triaxial compression test showed that the amount of deformation entering the plastic deformation failure zone at the end of the second stage section and in the third stage plastic deformation section was 1.76 mm for the conventional mixture and 1.50 mm for the complex modifier mixture. The average slope of the complex modifier asphalt mixture mixed with the multi-functional modifier was 0.005 mm/sec. The plastic deformation rate is relatively small in the section where the road pavement exhibits stable common performance, i.e. the traffic load.

The Performance Evaluation and Analysis of Next Generation Wireless LAN with OFDM (OFDM을 적용한 차세대 무선 LAN의 성능 평가 및 분석)

  • Han, Kyung-Su;Youn, Hee-Sang
    • Journal of Advanced Navigation Technology
    • /
    • 제6권1호
    • /
    • pp.37-43
    • /
    • 2002
  • This paper describes the performance evaluation and analysis of Wireless Local Area Network (W-LAN) in the 5 GHz ISM-band in compliance with IEEE 802.11a. At present, most W-LAN products are based on 2.4 GHz band, but low speed (11Mbps) has the limitation to serve systems demanding high-speed data transmission. To solve this problem, it is necessary to design next generation W-LAN system with 54Mbps in the 5GHz. It is sure that implementation of next generation W-LAN will bring competitive advantages. In particular, it will support telecommunications for high-speed mobile environments as well as for fixed places such as a school zone, a lecture room, a hospital and other premises. A few simulation methods are applied to more accurate and reliable performance analysis of next generation W-LAN. To verify if continuous data service is supported for a high-speed mobile notebook, multi-path fading channels between wireless Access Point (AP) and wireless Network Interface Card (NIC) are modeled. In addition, low interference is analyzed via convolutional codes and Orthogonal Frequency-Division Multiplexing (OFDM). Also, to obtain reliable Bit Error Rate (BER), a single tap Least Mean Square (LMS) equalizer is applied. Given the above simulation, next generation W-LAN is an ideal solution for continuous data transmission in high-speed mobile environments.

  • PDF

Geochemical Properties of Deep Sea Sediment in the Benthic Environmental Impact Experiment Site (BIS) of Korea (심해 저층환경충격 시험지역의 퇴적물 지화학적 특성)

  • Kong, Gee Soo;Hyeong, Kiseong;Choi, Hun-Soo;Chi, Sang-Bum
    • Ocean and Polar Research
    • /
    • 제36권4호
    • /
    • pp.407-421
    • /
    • 2014
  • The benthic environmental impact experiment addresses environmental impacts at a specific site related to deep-sea mineral resource development. We have acquired several tens of multi- or box core samples at 31 sites within the Benthic environmental Impact Site (BIS) since 2010, aiming to examine the basic properties of surficial deep-sea sediment as a potential source for deep-water plumes. In this study, we present the geochemical properties such as major elements, rare earth elements (REEs), and heavy metal contents at the BIS. Such proxies vary distinctly according to the Facies association. The lithology of all core sediments in the BIS corresponds to both Association Ib and Association IIIb. The vertical profiles of some major elements ($SiO_2$, $Fe_2O_3$, CaO, $P_2O_5$, MgO, MnO) show noticeable differences between Association Ib and IIIb, while others ($Al_2O_3$, $TiO_2$, $Na_2O$, and $K_2O$) do not vary between Association Ib and IIIb. REEs are also distinctly different for Associations Ib and IIIb; in Association Ib, REY and HREE/LREE are uniform through the sediment section, while they increase downward in Association IIIb like the major elements; below a depth of 8 cm, REY is over 500 ppm. The metal enrichment factor (EF) evaluates the anthropogenic influences of some metals (Cu, Ni, Pb, Zn, and Cd) in marine sediments. In both Associations, the EF for Cu is over 1.5, the EF for Ni and Pb ranges from 0.5 to 1.5, and the EF for Zn and Cd are less than 0.5, indicating Cu is enriched but Zn and Cd are relatively depleted in the BIS. The vertical variations of geochemical properties between Association Ib and IIIb are shown to be clearly different, which seems to be related to the global climate changes such as the shift of Intertropical convergence zone (ITCZ).

Multiple Transmit Focusing Method With Modified Orthogonal Golay Codes for Ultrasound Imaging (초음파 영상에서 변형된 직교 골레이 코드를 이용한 동시 다중 송신 집속 기법)

  • 김배형;송태경
    • Journal of Biomedical Engineering Research
    • /
    • 제24권3호
    • /
    • pp.217-231
    • /
    • 2003
  • Coded excitation with complementary Golay sequences is an effective means to increase the SNR and penetration of ultrasound imaging. in which the two complementary binary codes are transmitted successively along each scan-line, reducing the imaging frame rate by half. This method suffers from low frame rate particularly when multiple transmit focusing is employed, since the frame rate will be further reduced in proportion to the number of focal zones. In this paper. a new ultrasound imaging technique based on simultaneous multiple transmit focusing using modified orthogonal Golay codes is proposed to improve lateral resolution with no accompanying decrease in the imaging frame rate, in which a pair of orthogonal Golay codes focused at two different focal depths are transmitted simultaneously. On receive, these modified orthogonal Golay codes are separately compressed into two short pulses and individually focused. These two focused beams are combined to form a frame of image with improved lateral resolution. The Golay codes were modified to improve the transmit power efficiency (TPE) for practical imaging. Computer simulations and experimental results show that the proposed method improves significantly the lateral resolution and penetration of ultrasound imaging compared with the conventional method.

Estimation of Land Surface Energy Fluxes using CLM and VIC model (CLM과 VIC 모형을 활용한 지표 에너지 플럭스 산정)

  • Kim, Daeun;Ray, Ram L.;King, Seokkoo;Choi, Minha
    • Journal of Wetlands Research
    • /
    • 제18권2호
    • /
    • pp.166-172
    • /
    • 2016
  • Accurate understanding of land surface is essential to analyze energy exchanges between earth surface and atmosphere. For the quantization of energy fluxes, the various researches about Land Surface Model(LSM) have been progressed. Among the various LSMs, the researches using Common Land Model(CLM) and Variable Infiltration Capacity(VIC) model are performed briskly. The CLM which is advanced LSM can calculate realistic results with few user defined parameters. The VIC model which is also typical LSM is widely used for estimation of energy fluxes and runoff in various fields. In this study, the energy fluxes which are net radiation, sensible heat flux, and latent heat flux were estimated using CLM and VIC model at Southern Sierra-Critical Zone Observatory(SS-CZO) site in California, United States. In case of net radiation and sensible heat flux, both models showed good agreement with observations, however, the CLM showed underestimated patterns of net radiation and sensible heat flux during precipitation period. In case of latent heat flux, the CLM represented better estimation of latent heat flux than VIC model which underestimated the latent heat flux. Through the estimation of energy fluxes and analysis of models' pros and cons, the applicability of CLM and VIC models and need of multi-model application were identified.

Long-term Changes of Fish Ecological Characteristics on the Gwanpyeong Stream Development and the Necropsy-based Health Assessments (관평천 개발에 따른 장기간 어류 생태적 특성 변화 및 해부학적 건강도 평가)

  • Oh, Ja Yun;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Environment and Ecology
    • /
    • 제34권4호
    • /
    • pp.282-293
    • /
    • 2020
  • This study investigated a long-term variation trend of water quality, fish compositions, and ecological health conditions in the Gwanpyeong stream located in the nearby Daejeon metropolitan city to understand the impact of urban development projects on the aquatic ecosystem. The sampling was made in four surveys (2009, 2010, 2016, 2019) before and after urbanization. The urban development was conducted in 2008, resulting in the stream's ecological disturbance, and the stream restoration was conducted in 2012. Thus, stream monitoring was conducted to analyze the ecological trends before and after the restoration. The multi-metric models for Fish Assessment Index(FAI) and necropsy-based Health Assessment Index(HAI) were applied in the fish community and organ-level, respectively, to assess the ecological health of the stream. Minimum turbidity and chlorophyll-a(Chl-a) occurred in the mid-stream(St. 2), and this was probably due to rapid current velocity in the riffle zone. We collected 18 fish species, and the dominant species was Zacco platypus (40.6%). In 2016 immediately after the stream restoration, the relative proportions of sensitive species and insectivore species were the highest along with highest values in the species diversity and species richness index, resulting in the best condition in the ecological health, based on FAI model values. However, the ecological health, based on the FAI, became worse in the latest survey conducted in 2019. The analysis of the HAI model based on the organ-level approach showed skin erosion in the fish of upper stream, kidney defects in downstream, and the liver and gill defects observed in all sites, indicating that the anatomical health was also affected.

Geological Structure of the Jirisan Metamorphic Complex of the Yeongnam Massif in the Hwagae Area, Korea (화개지역에서 영남육괴 지리산 변성암복합체의 지질구조)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • 제22권4호
    • /
    • pp.251-261
    • /
    • 2013
  • Hwagae area, which is situated in the southeastern part of the Jirisan province, Yeongnam massif, Korea, is mainly composed of Precambrian Jirisan metamorphic rock complex (JMRC). Lithofacies distribution of the Precambrian constituent rocks mainly shows NS-trending tight fold and EW-trending open fold. This paper researched deformational phased structural characteristics of JMRC based on the geometric and kinematic features and the forming sequence of multi-deformed rock structures, and suggests that the geological structure of this area was formed through at least three phases of ductile deformation. (1) Most of structural elements related to the $D_1$ deformation were recognized as $S_{0-1-2}$ composite foliation which was transposed by the $D_2$ deformation. (2) The $D_2$ deformation occurred under the EW-directed tectonic compression, and formed the NS-trending $F_2$ fold and $D_2$ ductile shear zone which is (sub)parallel to the axial plane of $F_2$ fold. (3) The $D_3$ deformation occurred under the NS-directed tectonic compression, and partially reoriented the pre-$D_3$ structural elements into ENE or WNW direction. It indicates that the distribution of Precambrian lithofacies showing NS and EW-trending folds in the Hwagae area is closely associated with the $D_2$ and $D_3$ deformations, respectively.

Analysis of the Climate inside Multi-span Plastic Greenhouses under Different Shade Strategies and Wind Regimes

  • He, Keshi;Chen, Dayue;Sun, Lijuan;Huang, Zhenyu;Liu, Zhenglu
    • Horticultural Science & Technology
    • /
    • 제32권4호
    • /
    • pp.473-483
    • /
    • 2014
  • In this work, the effects of shade combination, shade height and wind regime on greenhouse climate were quantified. A two-dimensional (2-D) computational fluid dynamics (CFD) model was developed based on an 11-span plastic greenhouse in eastern China for wind almost normal to the greenhouse orientation. The model was first validated with air temperature profiles measured in a compartmentalized greenhouse cultivated with mature lettuce (Lactuca sativa L., 'Yang Shan'). Next, the model was employed to investigate the effect of shade combinations on greenhouse microclimate patterns. Simulations showed similar airflow patterns in the greenhouse under different shade combinations. The temperature pattern was a consequence of convection and radiation transfer and was not significantly influenced by shade combination. The use of shade screens reduced air velocity by $0.02-0.20m{\cdot}s^{-1}$, lowered air temperature by $0.2-0.8^{\circ}C$ and raised the humidity level by 0.9-2.0% in the greenhouse. Moreover, it improved the interior climate homogeneity. The assessment of shade performance revealed that the external shade had good cooling and homogeneity performance and thus can be recommended. Furthermore, the effects of external shade height and wind regime on greenhouse climate parameters showed that external shade screens are suitable for installation within 1 m above roof level. They also demonstrated that, under external shade conditions, greenhouse temperature was reduced relative to unshaded conditions by $1.3^{\circ}C$ under a wind speed of $0.5m{\cdot}s^{-1}$, whereas it was reduced by merely $0.5^{\circ}C$ under a wind speed of $2.0m{\cdot}s^{-1}$. Therefore, external shading is more useful during periods of low wind speed.

Kinetic Analysis for the Pyrolysis of Solid Refues Fuel Using Livestock Manure (축분 고형연료의 열분해 동역학 연구)

  • Jang, Eun-Suk;Song, Eunhye;Yoon, Jonghyuk;Kim, Young-Min
    • Applied Chemistry for Engineering
    • /
    • 제31권4호
    • /
    • pp.443-451
    • /
    • 2020
  • In this study, the physico-chemical properties and pyrolysis kinetics of livestock mature solid fuel were investigated to know its feasibility as a fuel. Ultimate and proximate analysis results showed that livestock mature solid fuel has high contents of volatile matter (64.94%), carbon (44.35%), and hydrogen (5.54%). The low heating value of livestock mature solid fuel (3880 kcal/kg) was also higher than the standard requirement of solid fuel (3000 kcal/kg). Thermogravimetic analysis results indicated that livestock mature solid fuel has three decomposition temperature regions. The first temperature zone (130~330 ℃) was consisted with the vaporization of extracts and the decomposition of hemicellulose and cellulose. The second (330~480 ℃) and third (550~800 ℃) temperature regions were derived from the decomposition of lignin and additional decomposition of carbonaceous materials, respectively. The activation energy derived from model free kinetic analysis results including Friedman, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS) methods for the pyrolysis of livestock mature solid fuel was in the range of 173.98 to 525.79 kJ/mol with a conversion rate of 0.1 to 0.9. In particular, the activation energy increased largely at the higher conversion than 0.6. The kinetic analysis using a curve-fitting method suggested that livestock mature solid fuel was decomposed via a multi-step reaction which can be divided into five decomposition steps.

Investigation of Hydraulic Flow Properties around the Mouths of Deep Intake and Discharge Structures at Nuclear Power Plant by Numerical Model (수치모의를 통한 원자력 발전소 심층 취·배수 구조물 유·출입구 주변에서의 수리학적 흐름특성 고찰)

  • Lee, Sang Hwa;Yi, Sung Myeon;Park, Byong Jun;Lee, Han Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제32권2A호
    • /
    • pp.123-130
    • /
    • 2012
  • A cooling system is indispensable for the fossil and nuclear power plants which produce electricity by rotating the turbines with hot steam. A cycle of the typical cooling system includes pumping of seawater at the intake pump house, exchange of heat at the condenser, and discharge of hot water to the sea. The cooling type of the nuclear power plants in Korea recently evolves from the conventional surface intake/discharge systems to the submerged intake/discharge systems that minimize effectively an intake temperature rise of the existing plants and that are beneficial to the marine environment by reducing the high temperature region with an intensive dilution due to a high velocity jet and density differential at the mixing zone. It is highly anticipated that the future nuclear power plants in Korea will accommodate the submerged cooling system in credit of supplying the lower temperature water in the summer season. This study investigates the approach flow patterns at the velocity caps and discharge flow patterns from diffusers using the 3-D computational fluid dynamics code of $FLOW-3D^{(R)}$. The approach flow test has been conducted at the velocity caps with and without a cap. The discharge flow from the diffuser was simulated for the single-port diffuser and multi-ports diffuser. The flow characteristics to the velocity cap with a cap demonstrate that fish entrainment can significantly be minimized on account of the low vertical flow component around the cap. The flow pattern around the diffuser is well agreed with the schematic diagram by Jirka and Harleman.