• 제목/요약/키워드: Multi spectrum camera

검색결과 16건 처리시간 0.066초

Method of vegetation spectrum measurement using multi spectrum camera

  • Takafuji, Yoshifumi.;Kajiwara, Koji.;Honda, Yoshiaki.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.570-572
    • /
    • 2003
  • In this paper, a method of vegetation spectrum measurement using multi spectrum camera was studied. Each pixel in taken images using multi spectrum camera have spectrum data, the relationship between spectrum data and distribution, structure, etc. are directly turned out. In other words, detailed spectrum data information of object including spatial distribution can be obtained from those images. However, the camera has some problems for applying field measurement and data analysis. In this study, those problems are solved.

  • PDF

다중스펙트럼을 이용한 횡단보도 보행자 검지에 관한 연구 (A study on the detection of pedestrians in crosswalks using multi-spectrum)

  • 김정훈;최두현;이종선;이동화
    • 한국산업정보학회논문지
    • /
    • 제27권1호
    • /
    • pp.11-18
    • /
    • 2022
  • 주간 및 야간의 보행자 감지를 위해서는 다중 스펙트럼 활용이 필수적이다. 본 논문에서는 교통사고의 위험성이 높은 교차로에서 횡단보도 근처의 보행자를 24시간 검출하기 위해 컬러 카메라 및 열화상 적외선 카메라를 사용하였다. 보행자 탐지를 위해서 YOLO v5 객체 검출기를 사용하였으며 컬러 이미지와 열화상 이미지를 동시에 사용하여 감지 성능을 향상 시켰다. 제안된 시스템은 실제 횡단보도 현장에서 확보한 주·야간 다중 스펙트럼(색상 및 열화상) 보행자 데이터 셋에서 Iou 0.5 기준 0.94 mAP의 높은 성능을 보였다.

Spectrum-Based Color Reproduction Algorithm for Makeup Simulation of 3D Facial Avatar

  • Jang, In-Su;Kim, Jae Woo;You, Ju-Yeon;Kim, Jin Seo
    • ETRI Journal
    • /
    • 제35권6호
    • /
    • pp.969-979
    • /
    • 2013
  • Various simulation applications for hair, clothing, and makeup of a 3D avatar can provide more useful information to users before they select a hairstyle, clothes, or cosmetics. To enhance their reality, the shapes, textures, and colors of the avatars should be similar to those found in the real world. For a more realistic 3D avatar color reproduction, this paper proposes a spectrum-based color reproduction algorithm and color management process with respect to the implementation of the algorithm. First, a makeup color reproduction model is estimated by analyzing the measured spectral reflectance of the skin samples before and after applying the makeup. To implement the model for a makeup simulation system, the color management process controls all color information of the 3D facial avatar during the 3D scanning, modeling, and rendering stages. During 3D scanning with a multi-camera system, spectrum-based camera calibration and characterization are performed to estimate the spectrum data. During the virtual makeup process, the spectrum data of the 3D facial avatar is modified based on the makeup color reproduction model. Finally, during 3D rendering, the estimated spectrum is converted into RGB data through gamut mapping and display characterization.

Development and evaluation of a compact gamma camera for radiation monitoring

  • Dong-Hee Han;Seung-Jae Lee;Hak-Jae Lee;Jang-Oh Kim;Kyung-Hwan Jung;Da-Eun Kwon;Cheol-Ha Baek
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2873-2878
    • /
    • 2023
  • The purpose of this study is to perform radiation monitoring by acquiring gamma images and real-time optical images for 99mTc vial source using charge couple device (CCD) cameras equipped with the proposed compact gamma camera. The compact gamma camera measures 86×65×78.5 mm3 and weighs 934 g. It is equipped with a metal 3D printed diverging collimator manufactured in a 45 field of view (FOV) to detect the location of the source. The circuit's system uses system-on-chip (SoC) and field-programmable-gate-array (FPGA) to establish a good connection between hardware and software. In detection modules, the photodetector (multi-pixel photon counters) is tiled at 8×8 to expand the activation area and improve sensitivity. The gadolinium aluminium gallium garnet (GAGG) measuring 0.5×0.5×3.5 mm3 was arranged in 38×38 arrays. Intrinsic and extrinsic performance tests such as energy spectrum, uniformity, and system sensitivity for other radioisotopes, and sensitivity evaluation at edges within FOV were conducted. The compact gamma camera can be mounted on unmanned equipment such as drones and robots that require miniaturization and light weight, so a wide range of applications in various fields are possible.

Real-Time Eye Tracking Using IR Stereo Camera for Indoor and Outdoor Environments

  • Lim, Sungsoo;Lee, Daeho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권8호
    • /
    • pp.3965-3983
    • /
    • 2017
  • We propose a novel eye tracking method that can estimate 3D world coordinates using an infrared (IR) stereo camera for indoor and outdoor environments. This method first detects dark evidences such as eyes, eyebrows and mouths by fast multi-level thresholding. Among these evidences, eye pair evidences are detected by evidential reasoning and geometrical rules. For robust accuracy, two classifiers based on multiple layer perceptron (MLP) using gradient local binary patterns (GLBPs) verify whether the detected evidences are real eye pairs or not. Finally, the 3D world coordinates of detected eyes are calculated by region-based stereo matching. Compared with other eye detection methods, the proposed method can detect the eyes of people wearing sunglasses due to the use of the IR spectrum. Especially, when people are in dark environments such as driving at nighttime, driving in an indoor carpark, or passing through a tunnel, human eyes can be robustly detected because we use active IR illuminators. In the experimental results, it is shown that the proposed method can detect eye pairs with high performance in real-time under variable illumination conditions. Therefore, the proposed method can contribute to human-computer interactions (HCIs) and intelligent transportation systems (ITSs) applications such as gaze tracking, windshield head-up display and drowsiness detection.

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • 제8권4호
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.

영역기반 가중치 맵을 이용한 멀티스팩트럼 플래시 영상 획득 (Multi-spectral Flash Imaging using Region-based Weight Map)

  • 최봉석;김대철;이철희;하영호
    • 전자공학회논문지
    • /
    • 제50권9호
    • /
    • pp.127-135
    • /
    • 2013
  • 저조도 환경에서 카메라로 영상을 획득하기 위해 일반적으로 가시광 플래시를 사용하거나 장노출 기법을 사용하게 된다. 그러나 가시광 플래시를 사용할 때 플래시 광에 의한 색 왜곡이나 적목 현상, 눈부심에 의한 거부감을 발생시킨다. 또한 장노출을 사용하게 되면 물체의 움직임에 의한 흔들림 현상이 발생하게 된다. 따라서 최근에는 이러한 단점을 극복하고, 저조도 환경에서 고화질의 영상을 획득하기 위하여 멀티 스팩트럴 플래시(Multi-spectral flash image)를 이용하여 영상을 획득하는 방법이 소개되었다. 이 방법은 가시광과 UV/IR스펙트럼의 다섯 채널을 이용하여 가시광영상의 색 정보와 UV/IR 스팩트럼 영상의 세부정보를 최적화하여 영상을 획득하는 방법이다. 하지만, 픽셀 기반의 최적화 과정에 있어 색 왜곡과 다른 잡음을 발생시키게 된다. 따라서 본 논문에서는 이러한 색 왜곡과 잡음을 개선하기 위해 영역 기반의 가중치 맵을 최적화 방법에 적용하여 색 왜곡을 개선하는 알고리즘을 제안한다. 먼저, 영상에 대하여 Canny 에지 검출 방법을 사용하여 영상의 윤곽을 검출하였다. 이를 가중치 맵으로 최적화방법에 적용함으로, 세부 영역에 대하여 UV/IR 플래시 영상의 정보에 가중치를 부여하고, 평탄한 영역에 대하여 가시광 영상의 색 정보를 가중치를 부여하여 색 왜곡을 개선하였다. 제안한 방법을 평가하기 위하여 실험을 통하여 제안한 방법과 이전방법을 비교하였고, 객관적 평가와 주관적 평가 모두 제안한 방법이 우수한 성능을 나타내었다.

Multi-class support vector machines for paint condition assessment on the Sydney Harbour Bridge using hyperspectral imaging

  • Huynh, Cong Phuoc;Mustapha, Samir;Runcie, Peter;Porikli, Fatih
    • Structural Monitoring and Maintenance
    • /
    • 제2권3호
    • /
    • pp.181-197
    • /
    • 2015
  • Assessing the condition of paint on civil structures is an important but challenging and costly task, in particular when it comes to large and complex structures. Current practices of visual inspection are labour-intensive and time-consuming to perform. In addition, this task usually relies on the experience and subjective judgment of individual inspectors. In this study, hyperspectral imaging and classification techniques are proposed as a method to objectively assess the state of the paint on a civil or other structure. The ultimate objective of the work is to develop a technology that can provide precise and automatic grading of paint condition and assessment of degradation due to age or environmental factors. Towards this goal, we acquired hyperspectral images of steel surfaces located at long (mid-range) and short distances on the Sydney Harbour Bridge with an Acousto-Optics Tunable filter (AOTF) hyperspectral camera (consisting of 21 bands in the visible spectrum). We trained a multi-class Support Vector Machines (SVM) classifier to automatically assess the grading of the paint from hyperspectral signatures. Our results demonstrate that the classifier generates highly accurate assessment of the paint condition in comparison to the judgement of human experts.

마이크로 드릴링 M/C에 의한 미세구멍가공특성에 관한 연구 (A Study on the Characteristics of Micro Deep Hole Machining in Micro Drilling Machine)

  • 민승기;이동주;이응숙;강재훈;김동우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.275-280
    • /
    • 2001
  • Recently, the trends of industrial products grow more miniaturization, variety and mass production. Micro drilling which take high precision in cutting work is requested more micro hole and high speed working. Especially, Micro deep hole drilling is becoming more important in a wide spectrum of precision production industries, ranging from the production of automotive fuel injection nozzle, watch and camera parts, medical needles, and thick multi-layered Printed Circuit Boards(PCB) that are demanded for very high density electric circuitry. This paper shows the tool monitoring results of micro drill with tool dynamometer. And additionally, microscope with built-in monitor inspection show the relationship between burr in workpiece and chip form of micro drill machining.

  • PDF

AKARI OBSERVATIONS OF THE INTERSTELLAR MEDIUM

  • Onaka, Takashi
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.187-193
    • /
    • 2012
  • AKARI has 4 imaging bands in the far-infrared (FIR) and 9 imaging bands that cover the near-infrared (NIR) to mid-infrared (MIR) contiguously. The FIR bands probe the thermal emission from sub-micron dust grains, while the MIR bands observe emission from stochastically-heated very small grains and the unidentified infrared (UIR) band emissions from carbonaceous materials that contain aromatic and aliphatic bonds. The multi-band characteristics of the AKARI instruments are quite efficient to study the spectral energy distribution of the interstellar medium, which always shows multi-component nature, as well as its variations in the various environments. AKARI also has spectroscopic capabilities. In particular, one of the onboard instruments, Infrared Camera (IRC), can obtain a continuous spectrum from 2.5 to $13{\mu}m$ with the same slit. This allows us to make a comparative study of the UIR bands in the diffuse emission from the 3.3 to $11.3{\mu}m$ for the first time. The IRC explores high-sensitivity spectroscopy in the NIR, which enables the study of interstellar ices and the UIR band emission at $3.3-3.5{\mu}m$ in various objects. Particularly, the UIR bands in this spectral range contain unique information on the aromatic and aliphatic bonds in the band carriers. This presentation reviews the results of AKARI observations of the interstellar medium with an emphasis on the observations of the NIR spectroscopy.