• Title/Summary/Keyword: Multi resolution image

Search Result 556, Processing Time 0.027 seconds

Multi-resolution Image Registration

  • Wisetphanichkij, Sompong;Dejhan, Kobchai;Likitkarnpaiboon, Prayong;Cheevasuvit, Fusak;Sra-Ium, Napat;Vorrawat, Vinai;Pienvijarnpong, Chanchai
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.263-265
    • /
    • 2003
  • The computation cost of image registration is affected by searching data size and space. This paper proposes an efficient image registration algorithm that uses multi-resolution wavelet decomposed image to reduce the data size search. The algorithm determines the correlation detection at low resolution on low-pass sub bands of wavelet and generate mask for higher resolution as part of a coarse to fine registration algorithm. The correlation matching is defined for coarse resolution similarity measurement, while mutual information (MI) is used at fine resolution. The results show that the new efficient mask-based algorithm improves computational efficiency and yields robust and consistent image registration results.

  • PDF

An Image Processing Speed Enhancement in a Multi-Frame Super Resolution Algorithm by a CUDA Method (CUDA를 이용한 초해상도 기법의 영상처리 속도개선 방법)

  • Kim, Mi-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.663-668
    • /
    • 2011
  • Although multi-frame super resolution algorithm has many merits but it demands too much calculation time. Researches have shown that image processing time can be reduced using a CUDA(Compute unified device architecture) which is one of GPGPU(General purpose computing on graphics processing unit) models. In this paper, we show that the processing time of multi-frame super resolution algorithm can be reduced by employing the CUDA. It was applied not to the whole parts but to the largest time consuming parts of the program. The simulation result shows that using a CUDA can reduce an operation time dramatically. Therefore it can be possible that multi-frame super resolution algorithm is implemented in real time by using libraries of image processing algorithms which are made by a CUDA.

Multi-resolution Lossless Image Compression for Progressive Transmission and Multiple Decoding Using an Enhanced Edge Adaptive Hierarchical Interpolation

  • Biadgie, Yenewondim;Kim, Min-sung;Sohn, Kyung-Ah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6017-6037
    • /
    • 2017
  • In a multi-resolution image encoding system, the image is encoded into a single file as a layer of bit streams, and then it is transmitted layer by layer progressively to reduce the transmission time across a low bandwidth connection. This encoding scheme is also suitable for multiple decoders, each with different capabilities ranging from a handheld device to a PC. In our previous work, we proposed an edge adaptive hierarchical interpolation algorithm for multi-resolution image coding system. In this paper, we enhanced its compression efficiency by adding three major components. First, its prediction accuracy is improved using context adaptive error modeling as a feedback. Second, the conditional probability of prediction errors is sharpened by removing the sign redundancy among local prediction errors by applying sign flipping. Third, the conditional probability is sharpened further by reducing the number of distinct error symbols using error remapping function. Experimental results on benchmark data sets reveal that the enhanced algorithm achieves a better compression bit rate than our previous algorithm and other algorithms. It is shown that compression bit rate is much better for images that are rich in directional edges and textures. The enhanced algorithm also shows better rate-distortion performance and visual quality at the intermediate stages of progressive image transmission.

A Multi-view Super-Resolution Method with Joint-optimization of Image Fusion and Blind Deblurring

  • Fan, Jun;Wu, Yue;Zeng, Xiangrong;Huangpeng, Qizi;Liu, Yan;Long, Xin;Zhou, Jinglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2366-2395
    • /
    • 2018
  • Multi-view super-resolution (MVSR) refers to the process of reconstructing a high-resolution (HR) image from a set of low-resolution (LR) images captured from different viewpoints typically by different cameras. These multi-view images are usually obtained by a camera array. In our previous work [1], we super-resolved multi-view LR images via image fusion (IF) and blind deblurring (BD). In this paper, we present a new MVSR method that jointly realizes IF and BD based on an integrated energy function optimization. First, we reformulate the MVSR problem into a multi-channel blind deblurring (MCBD) problem which is easier to be solved than the former. Then the depth map of the desired HR image is calculated. Finally, we solve the MCBD problem, in which the optimization problems with respect to the desired HR image and with respect to the unknown blur are efficiently addressed by the alternating direction method of multipliers (ADMM). Experiments on the Multi-view Image Database of the University of Tsukuba and images captured by our own camera array system demonstrate the effectiveness of the proposed method.

Efficient Multi-scalable Network for Single Image Super Resolution

  • Alao, Honnang;Kim, Jin-Sung;Kim, Tae Sung;Lee, Kyujoong
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2021
  • In computer vision, single-image super resolution has been an area of research for a significant period. Traditional techniques involve interpolation-based methods such as Nearest-neighbor, Bilinear, and Bicubic for image restoration. Although implementations of convolutional neural networks have provided outstanding results in recent years, efficiency and single model multi-scalability have been its challenges. Furthermore, previous works haven't placed enough emphasis on real-number scalability. Interpolation-based techniques, however, have no limit in terms of scalability as they are able to upscale images to any desired size. In this paper, we propose a convolutional neural network possessing the advantages of the interpolation-based techniques, which is also efficient, deeming it suitable in practical implementations. It consists of convolutional layers applied on the low-resolution space, post-up-sampling along the end hidden layers, and additional layers on high-resolution space. Up-sampling is applied on a multiple channeled feature map via bicubic interpolation using a single model. Experiments on architectural structure, layer reduction, and real-number scale training are executed with results proving efficient amongst multi-scale learning (including scale multi-path-learning) based models.

Multi-resolution Fusion Network for Human Pose Estimation in Low-resolution Images

  • Kim, Boeun;Choo, YeonSeung;Jeong, Hea In;Kim, Chung-Il;Shin, Saim;Kim, Jungho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2328-2344
    • /
    • 2022
  • 2D human pose estimation still faces difficulty in low-resolution images. Most existing top-down approaches scale up the target human bonding box images to the large size and insert the scaled image into the network. Due to up-sampling, artifacts occur in the low-resolution target images, and the degraded images adversely affect the accurate estimation of the joint positions. To address this issue, we propose a multi-resolution input feature fusion network for human pose estimation. Specifically, the bounding box image of the target human is rescaled to multiple input images of various sizes, and the features extracted from the multiple images are fused in the network. Moreover, we introduce a guiding channel which induces the multi-resolution input features to alternatively affect the network according to the resolution of the target image. We conduct experiments on MS COCO dataset which is a representative dataset for 2D human pose estimation, where our method achieves superior performance compared to the strong baseline HRNet and the previous state-of-the-art methods.

An Intermediate Image Generation Method using Multiresolution-based Hierarchical Disparity Map (다해상도 기반 계층적 변이맵을 이용한 중간영상 생성 방법)

  • 허경무;유재민
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.899-905
    • /
    • 2003
  • An intermediate images generation method using multi-resolution based hierarchical block matching disparity map is proposed. This method is composed of a disparity estimation, an occlusion detection and intermediate image synthesis. For the disparity estimation, which is one of the important processes in intermediate image synthesis, we use the multi-resolution based hierarchical block matching algorithm to overcome the imperfect ness of block matching algorithm. The proposed method makes disparity maps more accurate and dense by multi-resolution based hierarchical block matching, and the estimated disparity maps are used to generate intermediate images of stereo images. Generated intermediate images show 0.1∼1.4 ㏈ higher PSNR than the images obtained by block matching algorithm.

INITIAL GEOMETRIC ACCURACY OF KOMPSAT-2 HIGH RESOLUTION IMAGE

  • Seo, Doo-Chun;Lim, Hyo-Suk;Shin, Ji-Hyeon;Kim, Moon-Gyu
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.780-783
    • /
    • 2006
  • The KOrea Multi-Purpose Satellite-2 (KOMPSAT-2) was launched in July 2006 and the main mission of the KOMPSAT-2 is a high resolution imaging for the cartography of Korea peninsula by utilizing Multi Spectral Camera (MSC) images. The camera resolutions are 1 m in panchromatic scene and 4 m in multi-spectral imaging. This paper provides an initial geometric accuracy assessment of the KOMPSAT-2 high resolution image without ground control points and briefly introduces the sensor model of KOMPSAT-2. Also investigated and evaluated the obtained 3-dimensional terrain information using the MSC pass image and scene images acquired from the KOMPSAT-2 satellite.

  • PDF

Content-Based Image Retrieval Using Multi-Resolution Multi-Direction Filtering-Based CLBP Texture Features and Color Autocorrelogram Features

  • Bu, Hee-Hyung;Kim, Nam-Chul;Yun, Byoung-Ju;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.991-1000
    • /
    • 2020
  • We propose a content-based image retrieval system that uses a combination of completed local binary pattern (CLBP) and color autocorrelogram. CLBP features are extracted on a multi-resolution multi-direction filtered domain of value component. Color autocorrelogram features are extracted in two dimensions of hue and saturation components. Experiment results revealed that the proposed method yields a lot of improvement when compared with the methods that use partial features employed in the proposed method. It is also superior to the conventional CLBP, the color autocorrelogram using R, G, and B components, and the multichannel decoded local binary pattern which is one of the latest methods.

Comparative Analysis of Land-use thematic GIS layers and Multi-resolution Image Classification Results by using LANDSAT 7 ETM+ and KOMPSAT EOC image (Landsat 7 ETM+와 KOMPSAT EOC 영상 자료를 이용한 다중 분해능 영상 분류결과와 토지이용현황 주제도 대비 분석)

  • 이기원;유영철;송무영;사공호상
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.331-343
    • /
    • 2002
  • Recently, as various fields of applications using space-borne imagery have been emphasized, interests on integrated analysis or fusion using multi-sources are also increasing. In this study, to investigate applicability of multiple imageries for further regional-scaled application, DN value analysis and multi-resolution classification by using KOMPSAT EOC imagery and Landsat 7 ETM+image data in the Namyangju-city area were performed, and then this classified results were compared to land-use thematic data at the same area. In case of classified results by using muff-resolution image data, it is shown that linear-type features can be easily extracted. furthermore, it is expected that multi-resolution classified image can be effectively utilized to urban environment analysis, according to results of similar pattern by comparative study based on multi-buffered zone analysis or so-called distance analysis along main road features in the study area.