• 제목/요약/키워드: Multi point press forming

검색결과 9건 처리시간 0.02초

다점 프레스를 이용한 곡면 성형의 가공 정보 산출을 위한 IDA방법 (Application of IDA Method for Hull Plate Forming by Multi-Point Press Forming)

  • 윤종성;이장현;유철호;황세윤;이황범
    • 한국해양공학회지
    • /
    • 제22권6호
    • /
    • pp.75-82
    • /
    • 2008
  • Flame bending has been extensively used in the shipbuilding industry for hull plate forming In flame bending it is difficult to obtain the desired shape because the residual deformation dependson the complex temperature distribution and the thermal plastic strain. Mechanical bending such as reconfigurable press forming multi-point press forming or die-less forming has been found to improve the automation of hull plateforming because it can more accurately control the desired shape than line heating. Multi-point forming is a process in which external forces are used to form metal work-pieces. Therefore it can be a flexible and efficient forming technique. This paper presents an optimal approach to determining the press-stroke for multi-point press forming of curved shapes. An integrated configuration of Finite element analysis (FEA) and spring-back compensation algorithm is developed to calculate the strokes of the multi-point press. Not only spring-back is modeled by elastic plastic shell elements but also an iterative algorithm to compensate the spring-back is applied to adjust the amount of pressing stroke. An iterative displacement adjustment (IDA) method is applied by integration of the FEA procedure and the spring-back compensation work. Shape deviation between the desired surface and deform£d plate is minimized by the IDA algorithm.

선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용 (Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming)

  • 이장현;윤종성;류철호;이황범
    • 한국CDE학회논문집
    • /
    • 제14권2호
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

알루미늄 선박의 외판 가공을 위한 인장성형 시스템 연구 (Multi Point Press Stretch Forming System Applied to Curved Hull Plate of Aluminum Ship)

  • 배철남;황세윤;이장현;정우철;김광호
    • 한국CDE학회논문집
    • /
    • 제17권3호
    • /
    • pp.188-197
    • /
    • 2012
  • Recently, aluminum ships are constructed more than ever because of the environmental pollution generated by FRP (Fiber Reinforced Plastic) ships. In particular, FRP ships have been replaced by the Aluminum ships. The forming process of the curved aluminum plate has been performed only by labor works without systematic technique. Therefore, it is difficult to construct the aluminum ship that the design satisfies both required propulsion performance and hull design. Present study introduces a MPSF (Multi Point Stretching Forming) that is a flexible manufacturing technique to form large sheet panels of doubly curvature. The hull pieces are stretch-formed over the MPSD (multi-point stretching die) generated by the punch element matrix. In this study, MPSF is applied to deform the doubly curved surfaces of aluminum ship. The forming system including FEA (finite element analysis) of the processes for stretching the plate were carried out by static implicit analysis is suggested. Residual deformation of the surface is modeled by an elasto-plastic contact phenomena while the forming process is simulated by FEA. Finally, the proposed system is also validated, comparing the deformed shape by MPSF with that of object surfaces.

무금형 다점 펀치를 사용한 선체외판의 분할 성형 가공 정보 계산 시스템 개발 (Mechanical Bending Process and Application for a Large Curved Shell Plate by Multiple Point Press Machine)

  • 황세윤;이장현;류철호;한명수;김광호;김광식
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.528-538
    • /
    • 2011
  • As a forming method for curved hull plates more efficient than the flame bending, mechanical bending using multi point press forming and die-less forming is discussed in this paper. the mechanical forming is a flexible manufacturing system for automatically forming of hull parts. It is especially suited to varied curved parts. This paper discusses a multiple point pressing machine composed of a pair of reconfigurable punches in order to achieve the rapid forming of curved hull plates using division forming and presents how forming information is obtained from the given design surface. Although the mechanical forming can be efficient in the metal forming, spring back after pressing is a phenomenon which must be carefully considered when quantifying the process variables. If the spring back is not accurately controlled, the fabricated shell plate cannot meet assembly tolerance. This paper describes the principles to calculate the proper stroke of each punch at the divided areas. the strokes are determined by an iterative process of sequential pressing and spring back compensation from an unfolded flat shape to its given design surface. FEA(finite element analysis) is used to simulate the spring back of the plate and the IDA(iterative displacement adjustment) method adjusts the offset of pressing punches from the deformation results and the design surface. The shape deviations of two surfaces due to spring back are compensated by integrated system using FEA and IDA method. For the practical application, It is aimed to develop an integrated system that can automatically perform the compensation process and calculate strokes of punches of the double sides' reconfigurable multiple-press machine and some experimental results obtained with mechanical bending are presented.

TPE를 적용한 자동차 윈도우 모터커버의 개발 (Development of Automobile Windows Motor Cover by Thermoplastic Elastomer(TPE))

  • 조영태;고범용;이충호
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.847-851
    • /
    • 2010
  • It was attempted to develop an auto part by over molding injection mold that produces precision products in high productivity with use of an eco-friendly TPE substitute material for NBR. NBR is currently used in motor gear cover, one of the key parts in motor module for auto doors. Gear cover is composed of plastics and rubber mostly today, which requires a two (2) step process for production using two presses of different types. A hot press is used at this time for forming the rubber, which has drawback of requiring a rather long forming time of 400 seconds for one forming process. Even though this difficulty is overcome by reducing production time through employment of multi-cavity molds, time for forming process must be shortened for improvement of the productivity eventually, and the existing method of insert injection for products that have been formed with plastic material must be outgrown. In this point of view, over molding injection using TPE has a big advantage. Forming time is shortened to 54 seconds, and working the two (2) processes in series by one (1) press could solve the durability problem caused by deflection of the plastics, not to mention shortening the process time. Enhancement of productivity by almost 80% and improvement in the accuracy of the product could thus be achieved.

3차원 곡판 성형을 위한 비정형롤러의 형태에 따른 성형성 평가 (Evaluation of Formability Dependent on Reconfigurable Roller Types for 3D Curved Sheet Forming)

  • 손소은;윤준석;김형호;김정;강범수
    • 소성∙가공
    • /
    • 제25권1호
    • /
    • pp.12-20
    • /
    • 2016
  • Press machines and dies are commonly used for 3D curved sheet forming. Using conventional die forming can cause economic problems since various modifications of the die shape are required depending on the product shape. Various types of flexible forming such as multi-point dieless forming (MDF), flexible incremental roll forming have been developed to improve the needed process flexibility. Although MDF can reduce the production cost using reconfigurable dies, it still has significant material loss. Drawbacks such as wrinkling, dimpling, and forming errors can also occur despite continuous investigations to mitigate these defects. A novel sheet forming process for 3D curved surfaces, a flexibly-reconfigurable roll forming (FRRF), has been recently proposed to overcome the economic and technical limitations of current practice. FRRF has no limitation on blank size in the longitudinal direction, and also minimizes or eliminates forming defects such as wrinkling and dimpling. Feasibility studies of FRRF have been conducted using FE simulations for multi-curved shapes and various sheet thicknesses. Therefore, the fabrication of a FRRF apparatus is required for any follow-up studies. In the current study, experiments with reconfigurable rollers were conducted using a simple design pre-FRRF apparatus prior to fabricating the full size FRRF apparatus. There are three candidates for the reconfigurable roller: a bar-type shaft, a flexible shaft, a ground flexible shaft. Among these candidates, the suitable reconfigurable roller for FRRF is determined through various forming tests.

언더컷 형상의 판재 성형품에 보강용 CFRP 패치의 접합을 위한 공정기술 개발 (Development of a process to apply uniform pressure to bond CFRP patches to the inner surface of undercut-shaped sheet metal parts)

  • 이환주;전용준;조훈;김동언
    • Design & Manufacturing
    • /
    • 제14권4호
    • /
    • pp.65-70
    • /
    • 2020
  • Partial reinforcement of sheet metal parts with CFRP patch is a technology that can realize ultra-lightweight body parts while overcoming the high material cost of carbon fiber. Performing these patchworks with highly productive press equipment solves another issue of CFRP: high process costs. The A-pillar is the main body part and has an undercut shape for fastening with other parts such as roof panels and doors. Therefore, it is difficult to bond CFRP patches to the A-pillar with a general press forming tool. In this paper, a flexible system that applies uniform pressure to complex shapes using ceramic particles and silicone rubber is proposed. By benchmarking various A-pillars, a reference model with an undercut shape was designed, and the system was configured to realize a uniform pressure distribution in the model. The ceramic spherical particles failed to realize the uniform distribution of high pressure due to their high hardness and point contact characteristics, which caused damage to the CFRP patch. Compression equipment made of silicone rubber was able to achieve the required pressure level for curing the epoxy. Non-adhesion defects between the metal and the CFRP patch were confirmed in the area where the bending deformation occurred. This defect could be eliminated by optimizing the process conditions suitable for the newly developed flexible system.

딤플형 내부구조 금속 샌드위치 판재의 제작 및 정적 굽힘 실험 (Fabrication of Metallic Sandwich Plates with Inner Dimpled Shell Structure and Static Bending Test)

  • 성대용;정창균;윤석준;이상훈;안동규;양동열
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.653-661
    • /
    • 2006
  • Metallic sandwich plates with various inner cores have important new features with not only ultra-light material characteristics and load bearing function but also multifunctional characteristics. Because of production possibility on the large scale and a good geometric precision, sandwich plates with inner dimpled shell structure from a single material have advantages as compared with other solid sandwich plates. Inner dimpled shell structures can be fabricated with press or roll forming process, and then bonded with two face sheets by multi-point resistance welding or adhesive bonding. Elasto-plastic bending behavior of sandwich plates have been predicted analytically and measured. The measurements have shown that elastic perfectly plastic approximation can be conveniently employed with less than 10% error in elastic stiffness, collapse load, and energy absorption. The dominant collapse modes are face buckling and bonding failure after yielding. Sandwich plates with inner dimpled shell structure can absorb more energy than other types of sandwich plates during the bending behavior.

Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO

  • Benemaran, Reza Sarkhani;Esmaeili-Falak, Mahzad
    • Computers and Concrete
    • /
    • 제26권4호
    • /
    • pp.309-316
    • /
    • 2020
  • The application of multi-variable adaptive regression spline (MARS) in predicting he long-term compressive strength of a concrete with various admixtures has been investigated in this study. The compressive strength of concrete specimens, which were made based on 24 different mix designs using various mineral and chemical admixtures in different curing ages have been obtained. First, The values of fly ash (FA), micro-silica (MS), water-reducing admixture (WRA), coarse and fine aggregates, cement, water, age of samples and compressive strength were defined as inputs to the model, and MARS analysis was used to model the compressive strength of concrete and to evaluate the most important parameters affecting the estimation of compressive strength of the concrete. Next, the proposed equation by the MARS method using particle swarm optimization (PSO) algorithm has been optimized to have more efficient equation from the economical point of view. The proposed model in this study predicted the compressive strength of the concrete with various admixtures with a correlation coefficient of R=0.958 rather than the measured compressive strengths within the laboratory. The final model reduced the production cost and provided compressive strength by reducing the WRA and increasing the FA and curing days, simultaneously. It was also found that due to the use of the liquid membrane-forming compounds (LMFC) for its lower cost than water spraying method (SWM) and also for the longer operating time of the LMFC having positive mechanical effects on the final concrete, the final product had lower cost and better mechanical properties.