• 제목/요약/키워드: Multi material 3D printing technology

검색결과 11건 처리시간 0.025초

다중재료 DLP 3차원 프린터의 개발 (Development of Multi-Material DLP 3D Printer)

  • 박세원;정민우;손용운;강태영;이치범
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.100-107
    • /
    • 2017
  • 3D printing is a technology that converts a computer-generated 3D model into a real object with additive manufacturing technology. A majority of 3D printing technologies uses one material, and this is considered a limitation. In this study, we developed a multi-material 3D printer by adopting dual resin vat and cleaning system with DLP (Digital Light Processing) 3D printing technology. The developed multi-material DLP 3D printer is composed of a manufacturing system, cleaning system, transporting system, and automatic resin recharging system. Various 3D structures were 3D printed with two materials, thus demonstrating the potential. Printing performance of the multi-material DLP 3D printer was studied by performing a comparative surface roughness test and tension test on specimens composed of one material as well as those composed of two materials.

패션분야의 3D 프린팅 활용 현황에 관한 연구 (Study on Status of Utilizing 3D Printing in Fashion Field)

  • 김효숙;강인애
    • 한국의상디자인학회지
    • /
    • 제17권2호
    • /
    • pp.125-143
    • /
    • 2015
  • This study has investigated the status of utilizing 3D printing in fashion field in order to keep up with the trend for 3D printing technology to be realized in all industries so that the materials and the modeling modes may be figured out. The following is the findings. The materials used most in 3D printing in fashion field are PA, PLA, TPU, multi-material, ABS and metal. PA, TPU and Multi-material have so much excellent flexibility and strength that they are widely used for garment, shoes and such fashion items as bags. But PLA, ABS and metal are scarcely used for garment because PLA is easily biodegradable in the air, ABS generates harmful gas in the process of manufacture and metal is not flexible, while all of these three are partly used for shoes and accessories. The modeling modes mainly applied for 3D printing in fashion field are SLS, SLA, FDM and Polyjet. SLS, which is of a powder-spraying method, is used for making 3D textile seen just like knitting. Polyjet method, which has higher accuracy and excellent flexibility, can be used for expressing diverse colors, and accordingly it is used a lot for high-quality garment, while SLA and FDM method are found to be mostly used for manufacturing shoes and accessories rather than for making garment because they are easily shrunk to result in deformation.

  • PDF

스마트 소재 및 구조 기반 4D 프린팅 기술 동향 (4D printing with smart materials and structures)

  • 송현서;김지윤
    • 세라미스트
    • /
    • 제23권1호
    • /
    • pp.27-37
    • /
    • 2020
  • Recently, 4D printing technology has received considerable attention in various industries and research fields including soft robotics, tissue engineering, electronics. In 4D printing process, 3D printed object transforms itself into programmed structure by the input of external energy. Thus, this process requires not only smart materials, capable of changing their properties or features in response to external stimuli such as electricity, temperature, light, etc., but also smart structures, multi-material 3D printing, simulation and so on. In this review, the concept, technical elements and potential of 4d printing are presented.

잉크젯 프린팅을 이용한 연속 조성 세라믹 화합물 구조체 형성 (Additive Manufacturing of Various Ceramic Composition Using Inkjet Printing Process)

  • 박재현;최정훈;황광택;김진호
    • 한국재료학회지
    • /
    • 제30권11호
    • /
    • pp.627-635
    • /
    • 2020
  • 3D printing technology is a processing technology in which 3D structures are formed by fabricating multiple 2D layers of materials based on 3D designed digital data and stacking them layer by layer. Although layers are stacked using inkjet printing to release various materials, it is still rare for research to successfully form a product as an additive manufacture of multi-materials. In this study, dispersion conditions are optimized by adding a dispersant to an acrylic monomer suitable for inkjet printing using Co3O4 and Al2O3. 3D structures having continuous composition composed of a different ceramic material are manufactured by printing using two UV curable ceramic inks whose optimization is advanced. After the heat treatment, the produced structure is checked for the formation and color of the desired crystals by comparing the crystalline analysis according to the characteristics of each part of the structure with ceramic pigments made by solid phase synthesis method.

다중써멀버블 잉크젯방식의 3D 프린팅 시스템 개발 및 성능평가 (Evaluation and Development of Multi Thermal Bubble Ink Jet 3D Printing System)

  • 신문관;배성우;김정수
    • 한국정밀공학회지
    • /
    • 제32권9호
    • /
    • pp.787-792
    • /
    • 2015
  • Recently, 3D printing technology is a hot issue in various industrial fields. According to the user's application, it allows for the free form fabrication method to be utilized in a wide range. The powder based fusion technique is one of the 3D printing methods. When using this method it is possible to apply the various binder jetting techniques such as piezo, thermal bubble jet, dispenser and so on. In this paper, a multi thermal bubble ink jet was integrated for jetting of powder binding material and developing a power fused 3D printing system. For high quality 3D printing parts, it needs an analysis and evaluation of the behavior of the thermal bubble ink jet head. In the experiment, a correlation between jetting binder quantity and layer thickness of powder was investigated, and a 3D part model was fabricated, which was used by measuring the scale factor.

3D프린팅 기반 스톱모션 애니메이션 분석 (The Analysis of Stop Motion Animation based on 3D Printing)

  • 장완;송승근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.207-209
    • /
    • 2017
  • 새로운 기술인 3D 프린팅 기술은 신속한 개발 및 상대적으로 성숙한 기술 산업이 되었다. 오늘날 3D 프린팅은 작업의 모든 단계에 적용된다. 3D 프린팅 모델의 사용뿐만 아니라 빠른 형성, 그리고 정확도가 매우 높다. 급속히 발전한 3D 프린팅 기술이 스톱모션 애니메이션에 적용되면서 스톱모션 애니메이션 분야는 더울 풍부하게 발전 할 뿐만 아니라 새로운 기술과 기존 예술과 완벽하게 융합되는 것을 알 수 있다. 스톱모션 애니메이션의 개발에서 우리는 혁신으로서 3D 프린팅 및 전통적인 스톱모션 애니메이션 통합, 스톱모션 애니메이션에 적용된 스톱모션 애니메이션 제작 과정 및 제작을 이해해야한다. 멀티레벨, 멀티 앵글로 특성을 탐구하고, 스톱모션 애니메이션의 예술 형식을 바꾸어야 한다. 스톱모션 애니메이션을 제작할 때 이제는 3D 프린팅의 장점이 그 어느 분야 보다 돋보인다.

  • PDF

듀얼 노즐 FDM 프린터에서 노즐 간의 간섭을 최소화하는 모델의 빌드 방향 최적화를 위한 방법 (A Method for Optimizing Building Position of Model to Minimize Interference between Nozzles in FDM with Dual-nozzles)

  • 김태영;이용구
    • 한국CDE학회논문집
    • /
    • 제22권1호
    • /
    • pp.37-43
    • /
    • 2017
  • 3D printing techniques can be used in various application fields and many researches have been reported. FDM (Fused Deposition modeling) can make multi-material or multi-color models with the simultaneous use of two or more filaments. In a dual-nozzle FDM printers, while the active nozzle is working, the remaining nozzle will be idle. The remaining molten resins inside an idle nozzle can ooze out unwantedly. The spill over from the resting nozzle produces unwanted remaining on the fabricated product. In this research, we suggest a method for optimizing building position of a model to minimize the unwanted spill-over that could possibly contaminate the final product. The method is based on minimizing the two intersection volumes. The first intersection volume is obtained by intersecting the volume defined by the first material and the Minkowski sum between the volume of the first material and the vector obtained by subtracting the center point of the first nozzle from the center point of the second nozzle. The second intersection volume can be obtained by reversing the role of the first and second volumes and nozzles. Some results obtained from the implementation using the Parasolid (Siemens) geometric modeling kernel is presented.

MJF 3D 프린팅 기반 폴리아미드-12 소재의 건축적 활용을 위한 기계적 특성 실험에 관한 연구 - 출력 방향에 따른 인장 특성 변화를 중심으로 - (A Study on the Mechanical Properties Experiment for Architectural Application of Polyamide-12 MJF 3D Printing Material - Focusing on the Change in Tensile Properties According to the 3D Printing Orientation -)

  • 박상재;유승규;김문환;김재준
    • 한국건설관리학회논문집
    • /
    • 제21권6호
    • /
    • pp.95-102
    • /
    • 2020
  • 3D 프린팅 기술은 4차 산업 혁명의 도래와 함께 다양한 산업 분야에서 주목받고 있다. 특히 정밀한 부품을 제작하는 기계, 항공 등의 산업에서 그 활용 사례가 증가하고 있으며 건축 산업 역시 3D 프린팅 기술을 활용한 사례가 늘어나고 있는 추세이다. 현재 다양한 3D 프린팅용 소재가 개발 및 활용되고 잇지만, 3D 프린팅 제조는 사출 및 성형과 같은 기존 제조 방법과 비교하였을 때 제품의 기계적 특성이 달라질 가능성이 있다는 문제점이 있다. 본 논문은 3D 프린팅용 플라스틱 소재 중 널리 활용되고 있는 PA12 소재의 제품 제작 시 출력 방향이 제품의 기계적 특성에 미치는 영향을 검증하고 소재에 대한 이해를 확장시켜 건축 부자재 및 구조재로서의 활용 등의 실무적인 활용에 대한 기초 자료를 제공한다. 실험은 출력 방향의 영향을 확인하기 위해 0°, 30°, 45°, 60°, 90° 방향의 제품을 출력하였으며 인장 강도 실험을 통하여 인장 강도, 항복 강도, 연신율을 비교하였다. 실험 결과, 0° 방향으로 출력한 제품이 전반적으로 가장 낮은 강도와 연신율을 보였으며 45° 방향으로 출력한 제품이 가장 높은 수치를 보였다. 또한 전반적으로 0°부터 45° 사이에서는 인장강도와 항복 강도가 상승하였으며, 45°부터 90° 에서는 다소 감소하는 경향을 보였다.

AlSi12 분말의 직접 레이저 용융 적층 시 공정 조건에 따른 적층 특성에 관한 연구 (Study on Effects of Direct Laser Melting Process Parameters on Deposition Characteristics of AlSi12 powders)

  • 서자예;윤희석;이기용;심도식
    • 소성∙가공
    • /
    • 제27권5호
    • /
    • pp.314-322
    • /
    • 2018
  • AlSi12 is a heat-resistant aluminum alloy that is lightweight, corrosion-resistant, machinable and attracting attention as a functional material in aerospace and automotive industries. For that reason, AlSi12 powder has been used for high performance parts through 3D printing technology. The purpose of this study is to observe deposition characteristics of AlSi12 powder in a direct energy deposition (DED) process (one of the metal 3D printing technologies). In this study, deposition characteristics were investigated according to various process parameters such as laser power, powder feed rate, scan speed, and slicing layer thickness. In the single track deposition experiment, an irregular bead shape and balling or humping of molten metal were formed below a laser power of 1,000 W, and the good-shaped bead was obtained at 1.0 g/min powder feed rate. Similar results were observed in multi-layer deposition. Observation of deposited height after multi-layer deposition revealed that over-deposition occurred at all conditions. To prevent over-deposition, slicing layer thickness was experimentally determined at given conditions. From these results, this study presented practical conditions for good surface quality and accurate geometry of deposits.

Fused Deposition Modeling of Iron-alloy using Carrier Composition

  • Harshada R. Chothe;Jin Hwan Lim;Jung Gi Kim;Taekyung Lee;Taehyun Nam;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • 제58권1호
    • /
    • pp.44-56
    • /
    • 2023
  • Additive manufacturing (AM) or three-dimensional (3D) printing of metals has been drawing significant attention due to its reliability, usefulness, and low cost with rapid prototyping. Among the various AM technologies, fused deposition modeling (FDM) or fused filament fabrication is receiving much interest because of its simple manufacturing processing, low material waste, and cost-effective equipment. FDM technology uses metal-filled polymer filaments for 3D printing, followed by debinding and sintering to fabricate complex metal parts. An efficient binder is essential for producing polymer filaments and the thermal post-processing of printed objects. This study involved an in-depth investigation of and a fabrication route for a novel multi-component binder system with steel alloy powder (45 vol.%) ranging from filament fabrication and 3D printing to debinding and sintering. The binder system consisted of polyvinyl pyrrolidone (PVP) as a binder and thermoplastic polyurethane (TPU) and polylactic acid (PLA) as a carrier. The PVP binder held the metal components tightly by maintaining their stoichiometry, and the TPU and PLA in the ratio of 9:1 provided flexibility, stiffness, and strength to the filament for 3D printing. The efficacy of the binder system was examined by fabricating 3D-printed cubic structures. The results revealed that the thermal debinding and sintering processes effectively removed the binder/carrier from the cubic structures, resulting in isotropic shrinkage of approximately 15.8% in all directions. The scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) patterns displayed the microstructure behavior, phase transition, and elemental composition of the 3D cubic structure.