• 제목/요약/키워드: Multi cycle test

검색결과 94건 처리시간 0.026초

인간공학적 방법을 이용한 사이클 선수의 경기력 평가 (우수선수의 경기력 벤치마킹을 중심으로) (Cyclist's Performance Evaluation Used Ergonomic Method)

  • 하종규;장영관;기재석
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2009년도 추계학술대회
    • /
    • pp.15-24
    • /
    • 2009
  • Cycling that transform human energy into mechanical energy is one of the man-machine systems out of sports fields. Benchmarking means " improving ourselves by learning from others ", therefore benchmarking toward dominant cyclist is necessary on field. the goals of this study were to provide important factors on multi-disciplines (kinematics, physiology, power, psychology) for a tailored-training program that is suitable to individual characteristics. Two cyclist participated in this study and gave consent to the experimental procedure. one was dominant cyclist (years:21 yrs, height:177 cm, mass:70 kg), and the other was non-dominant cyclist(years:21, height:176, mass:70). Kinematic data were recorded using six infrared cameras (240Hz) and QTM (software). Physiological data (VO2max, AT) were acquired according to graded exercising test with cycle ergometer and power with Wingate test used by Bar-Or et. al ( 1977) and to evaluate muscle function with Cybex. Psychological data were collected with competitive state anxiety inventory (CSAI-2) that were devised by Martens et. al (1990) and with athletes' self-management questionnaire (ASMQ) of Huh (2003). It appears that the dominant's CV(coefficient of variability) was higher than non-dominant's CV in Sports Biomechanics domain, that the dominant's values for all factors ware higher than non-dominant's values in physical, and physiological domain, and their values between cognitive anxiety and somatic anxiety were contrary to each other in psychology. Further research on multi-disciplines may lead to the development of tailored-optimal training programs applicable with key factors to enhance athletic performance by means of research including athlete, coach and parents.

  • PDF

방파제 기초에 적용된 고품질 DCM공법의 설계 및 시공 사례 (A Case Study on the High-quality DCM applied to the Foundation of Breakwater)

  • 강연익;심민보;심성현;김하영;심재범;천윤철;윤종익
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.815-826
    • /
    • 2009
  • The paper presents a case study addressing the design and construction aspects for DCM(Deep Cement Mixing) method employed as the foundation of a caisson type breakwater with heavy weight(10,700 ton/EA) and a high design wave height($H_{1/3}$=8.7m). The DCM was designed for the project(Ulsan New Port North Breakwater Phase 1) by optimizing the pattern of DCM columns with a combination of short and long columns (i.e., block type(upper 3m)+wall type(lower)) and considering overlapped section between columns as a critical section against shear force where the coefficient of effective width of treated column($\alpha$) was estimated with caution. It was shown that the value can be 0.9 under the condition with the overlapped width of 30cm. In addition to that, a field trial test was performed after improving conventional DCM equipment (e.g., mixing blades, cement paste supplying pipes, multi auger motor, etc.) to establish a standardized DCM construction cycle (withdrawal rate of mixing blades) which can provide the prescribed strength. The result of the field strength test for cored DCM specimens shows that the averaged strength is larger than the target strength and the distribution of the strength(with a defect rate of 7%) also satisfies with the quality control normal distribution curve which allows defect rate of 15.9%.

  • PDF

굴삭기 주행모터용 주차브레이크의 시험분석 (Test Analysis of a Parking Brake for the Track Drive Unit of an Excavator)

  • 이용범;김광민
    • 대한기계학회논문집B
    • /
    • 제35권11호
    • /
    • pp.1157-1162
    • /
    • 2011
  • 굴삭기를 전진과 후진시키는 주행모터에는 주차브레이크(parking brake)가 내장되어있다. 이 주차브레이크는 굴삭기가 주차되었을 때 고정뿐만 아니라 전진 및 후진을 하지 않는 상태로 굴삭작업 할 때에도 차체를 지면에 고정시킨다. 정확한 굴삭작업을 위해서는 작업충격이나 자중을 포함한 굴삭부하가 발생했을 때 차체를 지면에 견고하게 고정해주는 브레이크 기능이 굴삭기가 주차되었을 때의 고정보다 더 중요하고 작용횟수 또한 훨씬 높다. 본 연구에서는 다중 마찰 판(multi friction disc)을 스프링 힘으로 작동(결합)시키고 유압실린더로 해제시키는 굴삭기 주행모터의 주차브레이크에 대해서 작용 압력별로 반복실험을 실시하여 측정된 데이터를 설계 이론값과 비교하여 주차브레이크의 특성을 분석하였다.

Analysis of the MSC(Multi-Spectral Camera) Operational Parameters

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun
    • 대한원격탐사학회지
    • /
    • 제18권1호
    • /
    • pp.53-59
    • /
    • 2002
  • The MSC is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a GSD(Ground Sample Distance) of 1 m over the entire FOV(Field Of View) at altitude 685 km. The instrument is designed to haute an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The MSC instrument has one channel for panchromatic imaging and four channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI(Time Belayed Integration) CCD(Charge Coupled Device) FPA(Focal Plane Assembly). The MSC hardware consists of three subsystem, EOS(Electro Optic camera Subsystem), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Subsystem) and each subsystems are currently under development and will be integrated and verified through functional and space environment tests. Final verified MSC will be delivered to spacecraft bus for AIT(Assembly, Integration and Test) and then COMSAT-2 satellite will be launched after verification process through IST(Integrated Satellite Test). In this paper, the introduction of MSC, the configuration of MSC electronics including electrical interlace and design of CEU(Camera Electronic Unit) in EOS are described. MSC Operation parameters induced from the operation concept are discussed and analyzed to find the influence of system for on-orbit operation in future.

모델기반 시스템공학을 응용한 대형복합기술 시스템 개발 (Application of Model-Based Systems Engineering to Large-Scale Multi-Disciplinary Systems Development)

  • 박중용;박영원
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.689-696
    • /
    • 2001
  • Large-scale Multi-disciplinary Systems(LMS) such as transportation, aerospace, defense etc. are complex systems in which there are many subsystems, interfaces, functions and demanding performance requirements. Because many contractors participate in the development, it is necessary to apply methods of sharing common objectives and communicating design status effectively among all of the stakeholders. The processes and methods of systems engineering which includes system requirement analysis; functional analysis; architecting; system analysis; interface control; and system specification development provide a success-oriented disciplined approach to the project. This paper shows not only the methodology and the results of model-based systems engineering to Automated Guided Transit(AGT) system as one of LMS systems, but also propose the extension of the model-based tool to help manage a project by linking WBS (Work Breakdown Structure), work organization, and PBS (Product Breakdown Structure). In performing the model-based functional analysis, the focus was on the operation concept of an example rail system at the top-level and the propulsion/braking function, a key function of the modern automated rail system. The model-based behavior analysis approach that applies a discrete-event simulation method facilitates the system functional definition and the test and verification activities. The first application of computer-aided tool, RDD-100, in the railway industry demonstrates the capability to model product design knowledge and decisions concerning key issues such as the rationale for architecting the top-level system. The model-based product design knowledge will be essential in integrating the follow-on life-cycle phase activities. production through operation and support, over the life of the AGT system. Additionally, when a new generation train system is required, the reuse of the model-based database can increase the system design productivity and effectiveness significantly.

  • PDF

Synthesis of Multi-component Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization

  • 박영욱;김종순;권혁조;서동화;김성욱;홍지현;강기석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.37.1-37.1
    • /
    • 2010
  • The multi-component olivine cathode material, $LiMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$, was prepared via a novel coprecipitation method of the mixed transition metal oxalate, $Mn_{1/3}Fe_{1/3}Co_{1/3}(C_2O_4){\cdot}2H_2O$. The stoichiometric ratio and distribution of transition metals in the oxalate, therefore, in the olivine product, was affected sensitively by the environments in the coprecipitation process, while they are the important factors in determining the electrochemical property of electrode materials with multiple transition metals. The effect of the pH, atmosphere, temperature, and aging time was investigated thoroughly with respect to the atomic ratio of transition metals, phase purity, and morphology of the mixed transition metal oxalate. The electrochemical activity of each transition metal in the olivine synthesized through this method clearly was enhanced as indicated in the cyclic voltammetry (CV) and galvanostatic charge/discharge measurement. Three distinctive contributions from Mn, Fe, and Co redox couples were detected reversibly in multiple charge and discharge processes. The first discharge capacity at the C/5 rate was $140.5\;mAh\;g^{-1}$ with good cycle retention. The rate capability test showed that the high capacity still is retained even at the 4C and 6C rates with 102 and $81\;mAh\;g^{-1}$, respectively.

  • PDF

The Ground Checkout Test of OSMI(Ocean Scanning Multispectral Imager) on KOMPSAT-1

  • Yong, Sang-Soon;Shim, Hyung-Sik;Heo, Haeng-Pal;Cho, Young-Min;Oh, Kyoung-Hwan;Woo, Sun-Hee;Paik, Hong-Yul
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.375-380
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the KOMPSAT satellite to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a wisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of<1km over the entire field of view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The instrument also performs sun and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400nm to 900nm using CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands. KOMPSAT satellite with OSMI was integrated and the satellite level environment tests and instrument aliveness/functional test as well, such as launch environment, on-orbit environment (Thermal/vacuum) and EMl/EMC test were performed at KARI. Test results met the requirements and the OSMI data were collected and analyzed during each test phase. The instrument is launched on the KOMPSAT satellite in the late 1999 and the image is scheduled to start collecting ocean color data in the early 2000 upon completion of on-orbit instrument checkout.

  • PDF

The Ground Checkout Test of OSMI on KOMPSAT-1

  • Yong, Sang-Soon;Shim, Hyung-Sik;Heo, Haeng-Pal;Cho, Young-Min;Oh, Kyoung-Hwan;Woo, Sun-Hee;Paik, Hong-Yul
    • 대한원격탐사학회지
    • /
    • 제15권4호
    • /
    • pp.297-305
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the KOMPSAT satellite to perform global ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a wisk-broom motion with a swath width of 800km and a ground sample distance (GSD) of < 1km over the entire field of view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The instrument also performs sun and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400nm to 900nm using CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands. KOMPSAT satellite with OSMI was integrated and the satellite level environment tests including instrument aliveness/functional test, such as launch environment, on-orbit environment (Thermal/Vacuum) and EMI/EMC test were performed at KARl. Test results met the requirements and the OSMI data were collected and analyzed during each test phase. The instrument is launched on the KOMPSAT satellite on December 21,1999 and is scheduled to start collecting ocean color data in the early 2000 upon completion of on-orbit instrument checkout.

컴패니언 로봇의 멀티 모달 대화 인터랙션에서의 감정 표현 디자인 연구 (Design of the emotion expression in multimodal conversation interaction of companion robot)

  • 이슬비;유승헌
    • 디자인융복합연구
    • /
    • 제16권6호
    • /
    • pp.137-152
    • /
    • 2017
  • 본 연구는 실버세대를 위한 컴패니언 로봇의 인터랙션 경험 디자인을 위해 사용자 태스크- 로봇 기능 적합도 매핑에 기반한 로봇 유형 분석과 멀티모달 대화 인터랙션에서의 로봇 감정표현 연구를 수행하였다. 노인의 니즈 분석을 위해 노인과 자원 봉사자를 대상으로 FGI, 에스노그래피를 진행하였으며 로봇 지원 기능과 엑추에이터 매칭을 통해 로봇 기능 조합 유형에 대한 분석을 하였다. 도출된 4가지 유형의 로봇 중 표정 기반 대화형 로봇 유형으로 프로토타이핑을 하였으며 에크만의 얼굴 움직임 부호화 시스템(Facial Action Coding System: FACS)을 기반으로 6가지 기본 감정에 대한 표정을 시각화하였다. 사용자 실험에서는 로봇이 전달하는 정보의 정서코드에 맞게 로봇의 표정이 변화할 때와 로봇이 인터랙션 사이클을 자발적으로 시작할 때 사용자의 인지와 정서에 미치는 영향을 이야기 회상 검사(Story Recall Test: STR)와 표정 감정 분석 소프트웨어 Emotion API로 검증하였다. 실험 결과, 정보의 정서코드에 맞는 로봇의 표정 변화 그룹이 회상 검사에서 상대적으로 높은 기억 회상률을 보였다. 한편 피험자의 표정 분석에서는 로봇의 감정 표현과 자발적인 인터랙션 시작이 피험자들에게 정서적으로 긍정적 영향을 주고 선호되는 것을 확인하였다.

무기체계 운용시험평가 개선전략 도출 및 우선순위 결정 (A Study on the Strategy for Improvement of Operational Test and Evaluation of Weapon System and the Determination of Priority)

  • 이강경;김금률;윤상돈;설현주
    • 융합보안논문지
    • /
    • 제21권1호
    • /
    • pp.177-189
    • /
    • 2021
  • 국방 연구개발은 변화하는 미래 전장환경에 대응하기 위해 중·장기 소요로 결정된 무기체계를 확보하기 위한 핵심과정이다. 특히 시험평가는 무기체계 연구개발의 마지막 관문으로서 전력화 전환여부를 결정하는데 필요한 정보를 제공해주고 무기체계의 수명주기와 연계된 성능보장을 위해서도 중요한 역할을 수행한다. 한편 최근 한반도 작전환경 및 국방 획득환경의 변화를 살펴보면, 크게 3가지 특징을 확인할 수 있다. 먼저 무기체계 전력화 운용시 지속적인 안전사고가 발생하여 전투원 안전에 대한 사회적 관심이 증대되었고, 획득비용의 증가에 따라 한정된 국방예산의 효율적 집행이 요구되고 있다. 또한 로봇·자율무기체계(RAS), 사이버 보안 시험평가 등 미래 전장환경에 대응하기 위한 전략적 접근이 필요하다. 따라서 본 연구에서는 최근 변화된 안보환경의 특징을 고찰하여 무기체계 운용시험평가의 개선전략을 제시하고자 한다. 이를 위해 현행 무기체계 운용시험평가 시스템의 보완소요를 다차원 모형으로 분석하여 개선전략을 도출하였고 계층적 분석기법(AHP)을 통해 우선순위를 결정하였다.