• Title/Summary/Keyword: Multi -spectral camera

Search Result 121, Processing Time 0.031 seconds

Analysis of ATS Verification Results for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Youn H.S.;Paik H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.448-451
    • /
    • 2004
  • MSC (Multi-Spectral Camera) system is an electro-optical camera system which is being developed to be installed on KOMPSAT-2 satellite. High resolution image data from MSC system will be transmitted to the ground-station through x-band antenna called APS (Antenna Pointing System). APS is a directional antenna which will point to the receiving antenna at ground station while the satellite is passing over it. The APS needs to be controlled accurately to provide the reliable communication with big RF link margin. The APS is controlled by ATS (Antenna Tracking Software) which is included in the MSC software. ATS uses the closed loop control algorithm which will use TPF (Tracking Parameter File) as an input for antenna position, and will use two resolve readings from APS as a feedback. ATS has been developed and verified using APS QM (Qualification Model) and all the control parameters for ATS have been tested and verified. Various kinds of maximum, nominal and realistic dynamics for the APS movement have been simulated and verified. In this paper, closed loop servo control algorithm and obtained APS position error from the verification test with APS QM will be presented in detail

  • PDF

Spectrum-Based Color Reproduction Algorithm for Makeup Simulation of 3D Facial Avatar

  • Jang, In-Su;Kim, Jae Woo;You, Ju-Yeon;Kim, Jin Seo
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.969-979
    • /
    • 2013
  • Various simulation applications for hair, clothing, and makeup of a 3D avatar can provide more useful information to users before they select a hairstyle, clothes, or cosmetics. To enhance their reality, the shapes, textures, and colors of the avatars should be similar to those found in the real world. For a more realistic 3D avatar color reproduction, this paper proposes a spectrum-based color reproduction algorithm and color management process with respect to the implementation of the algorithm. First, a makeup color reproduction model is estimated by analyzing the measured spectral reflectance of the skin samples before and after applying the makeup. To implement the model for a makeup simulation system, the color management process controls all color information of the 3D facial avatar during the 3D scanning, modeling, and rendering stages. During 3D scanning with a multi-camera system, spectrum-based camera calibration and characterization are performed to estimate the spectrum data. During the virtual makeup process, the spectrum data of the 3D facial avatar is modified based on the makeup color reproduction model. Finally, during 3D rendering, the estimated spectrum is converted into RGB data through gamut mapping and display characterization.

Assessment of Photochemical Reflectance Index Measured at Different Spatial Scales Utilizing Leaf Reflectometer, Field Hyper-Spectrometer, and Multi-spectral Camera with UAV (드론 장착 다중분광 카메라, 소형 필드 초분광계, 휴대용 잎 반사계로부터 관측된 서로 다른 공간규모의 광화학반사지수 평가)

  • Ryu, Jae-Hyun;Oh, Dohyeok;Jang, Seon Woong;Jeong, Hoejeong;Moon, Kyung Hwan;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1055-1066
    • /
    • 2018
  • Vegetation indices on the basis of optical characteristics of vegetation can represent various conditions such as canopy biomass and physiological activity. Those have been mostly developed with the large-scaled applications of multi-band optical sensors on-board satellites. However, the sensitivity of vegetation indices for detecting vegetation features will be different depending on the spatial scales. Therefore, in this study, the investigation of photochemical reflectance index (PRI), known as one of useful vegetation indices for detecting photosynthetic ability and vegetation stress, under the three spatial scales was conducted using multi-spectral camera installed in unmanned aerial vehicle (UAV),field spectrometer, and leaf reflectometer. In the leaf scale, diurnal PRI had minimum values at different local-time according to the compass direction of leaf face. It meant that each leaf in some moment had the different degree of light use efficiency (LUE). In early growth stage of crop, $PRI_{leaf}$ was higher than $PRI_{stands}$ and $PRI_{canopy}$ because the leaf scale is completely not governed by the vegetation cover fraction.In the stands and canopy scales, PRI showed a large spatial variability unlike normalized difference vegetation index (NDVI). However, the bias for the relationship between $PRI_{stands}$ and $PRI_{canopy}$ is lower than that in $NDVI_{stands}$ and $NDVI_{canopy}$. Our results will help to understand and utilize PRIs observed at different spatial scales.

The Development of Water Quality Monitoring System and its Application Using Satellite Image Data

  • Jang, Dong-Ho;Jo, Gi-Ho
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.376-381
    • /
    • 1998
  • In this study, we was measured the radiance reflectance by using multi-spectral image of low resolution camera(LRC) which will be loaded in the multi-purpose satellite(KOMPSAT) to use the data in analyzing water pollution. Also we investigated the possibility of extraction of water quality factors in rivers and water body by using high resolution remote sensing data such as Airborne MSS. Especially, we tried to extract the environmental factors related with eutrophication, and also tried to develop the process technique and the radiance feature of reflectance related with eutrophication. The results were summarized as follows: First, the spectrum of sun's rays which reaches the surface of the earth was consistent with visible rays bands of 0.4${\mu}{\textrm}{m}$~0.7${\mu}{\textrm}{m}$ and about 50% of total quantity of radiation were there. And at around 0.5${\mu}{\textrm}{m}$ of green spectral band in visible rays bands, the spectrum was highest. Second, as a result of the radiance reflectance Chlorophyll-a represented high spectral reflectance mainly around 0.52${\mu}{\textrm}{m}$ of green spectral band, and suspended sediments and turbidity represented high spectral reflectance at 0.8${\mu}{\textrm}{m}$ and at 0.57${\mu}{\textrm}{m}$ each. Third, as a result of the water quality analysis by using Airborne MSS, Chlorophyll-a could have a distribution chart when carried out ratio of B3 and BS to B7. And Band 7 was useful for making the distribution chart of suspended sediments. And when we carried out PCA, suspended sediments and turbidity had distributions at PC 1 , PC 4 each similarly to ground truth data. Above results can be changed according to the change of season and time. Therefore, in order to analyze more exactly the environmental factors of water quality by using LRC data, we need to investigate constantly the ground truth data and the radiance feature of reflectance of water body. Afterward in this study, we will constantly analyze the radiance feature of the surface of water in water body by measuring the on-the-spot radiance reflectance and using low resolution satellite image(SeaWiFs). Besides, we will gather the data of water quality analysis in water body and analyze the pattern of water pollution.

  • PDF

A Study on the Method of Generating RPC for KOMPSAT-2 MSC Pre-Processing System (KOMPSAT-2 MSC 전처리시스템을 위한 RPC(Rational Polynomial Coefficient)생성 기법에 관한 연구)

  • 서두천;임효숙
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.417-422
    • /
    • 2003
  • The KOMPSAT-2 MSC(Multi-Spectral Camera), with high spatial resolution, is currently under development and will be launched in the end of 2004. A sensor model relates a 3-D ground position to the corresponding 2-D image position and describes the imaging geometry that is necessary to reconstruct the physical imaging process. The Rational Function Model (RFM) has been considered as a generic sensor model. form. The RFM is technically applicable to all types of sensors such as frame, pushbroom, whiskbroom and SAR etc. With the increasing availability of the new generation imaging sensors, accurate and fast rectification of digital imagery using a generic sensor model becomes of great interest to the user community. This paper describes the procedure to generation of the RPC (Rational Polynomial Coefficients) for KOMPSAT-2 MSC.

  • PDF

다목적 위성 2호 MSC의 TDI 방식에 따른 MSC 영상 자료에 대한 영향

  • 이동한
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.104-104
    • /
    • 2003
  • 본 포스터에서는 다목적 위성 2호의 주 탑재체인 MSC(Multi-Spectral Camera)가 TDI(Time Delayed Integration) 방식을 채택함에 따라, TDI에 의해 MSC 영상 자료가 어떻게 영향을 받게 되는 지를 연구한 내용을 설명한다. MSC는 지상 해상도가 1m인 고해상도에서 영상을 촬영하기 때문에 상대적으로 입사 광량이 부족한 문제를 안고 있음에 따라 32 line의 TDI 방식을 사용한다. TDI 방식을 사용하여 MSC에서 직하방향으로 영상을 촬영할 경우, 영상의 가운데 pixel에서 멀어질수록 TDI에 의해 영상의 MTF 값이 떨어지는 결과가 발생한다. 또한, 다목적 위성 2호는 Roll 축을 중심으로 $\pm$30도 Pitch 축을 중심으로 $\pm$30도 tilt를 하여 영상을 촬영하도록 운영될 예정이기 때문에 더더욱 TDI에 의채 영상의 MTF 값이 떨어지는 결과가 발생하게 된다. 이외에도 TDI는 다목적 위성 2호의 고도가 감소하거나, Yaw 축의 변화, Jitter 등에 의해서도 영상의 MTF 값이 감소하게 된다. 물론 MSC CCD pixel의 sampling rate인 Line Rate 값을 각각의 경우에 따라 적절한 값을 부여함으로써 TDI에 의한 MTF 값의 감소를 많은 부분은 수습할 수 있으나 완벽한 보정은 힘든 상황이다.

  • PDF

RELIABILITY ANALYSIS OF THE MSC SYSTEM

  • Kim, Young-Soo;Lee, Do-Kyoung;Lee, Chang-Ho;Woo, Sun-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.3
    • /
    • pp.217-226
    • /
    • 2003
  • MSC (Multi-Spectral Camera) is the payload of KOMPSAT-2, which is being developed for earth imaging in optical and near-infrared region. The design of the MSC is completed and its reliability has been assessed from part level to the MSC system level. The reliability was analyzed in worst case and the analysis results showed that the value complies the required value of 0.9. In this paper, a calculation method of reliability for the MSC system is described, and assessment result is presented and discussed.

The Implementation of Communication Unit for KOMPSAT-II

  • Lee Sang-Taek;Lee Jong-Tae;Lee Sang-Gyu;Youn Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.457-459
    • /
    • 2004
  • The Channel Coding Unit (CCU) is an integral component of Payload Data Transmission System (PDTS) for the Multi-Spectral Camera (MSC) data. The main function of the CCU is channel coding and encryption. CCU has two channels (I & Q) for data processing. The input of CCU is the output of DCSU (Data Compression & Storage Unit). The output of CCU is the input of QTX which modulate data for RF communication. In this paper, there are the overview, short H/W description and operation concept of CCU.

  • PDF

APDE(Antenna Positioning Drive Electronics) Design for MSC (Multi-Spectral Camera)

  • Kong Jong-Pil;Heo Haeng-Pal;Kim YoungSun;Park Jong-Euk;Youn Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.440-443
    • /
    • 2004
  • As a main management unit of MSC, PMU controls the MSC payload operation by issuing commands to other subunit and PMU internal modules. One of these main control functions is to drive the APS(Antenna Pointing System) when APS motion is required. For this purpose, SBC(Single Board Computer) for calculating motor commands and APDE for driving APM(Antenna Pointing Mechanism) by PWM signal operate inside PUM. In this paper, details on APDE design shall be described such as electronic board architecture, primary and redundant design concept, Cross-Strap, FPGA contents and latch-up immune concept, etc., which shall show good practices of electronic board design for space program.

  • PDF

The Structure and Operation of KOMPSAT-II Memory (다목적실용위성 2호 메모리 구조와 운영)

  • 이종태;이상규;이상택;이도경
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.421-424
    • /
    • 2003
  • The KOMPSAT-II has a MSC(Multi-Spectral Camera) payload for earth observatory. The image data acquired during the pass over the Korean Peninsula can be sent to the ground station directly. But the image data out of the contact range should be stored temporally for later transmission. The KOMPSAT-II has a device for this purpose called the DCSU(Data Compression and Storage Unit) and the DCSU also performs compression functions for saving storage space and transmission time to send image data to the ground station. In this paper, we'd like to introduce the DCSU memory structures and operation.

  • PDF