• Title/Summary/Keyword: Mulliken charge

Search Result 12, Processing Time 0.03 seconds

First Principles Study on Factors Determining Battery Voltages of TiS2 and TiO2 (티타늄 산화물과 유화물의 전지 전압을 결정하는 요소에 대한 제일원리계산)

  • Kim, H.J.;Moon, W.J.;Kim, Y.M.;Bae, K.S.;Yoon, J.S.;Lee, Y.M.;Gook, J.S.;Kim, Y.S.
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.1
    • /
    • pp.8-12
    • /
    • 2009
  • Electronic structures and chemical bonding of Li-intercalated $LiTiS_2$ and $LiTiO_2$ were investigated by using discrete variational $X{\alpha}$ method as a first-principles molecular-orbital method. ${\alpha}-NaFeO_2$ structure is the equilibrium structure for $LiCoO_2$, which is widely used as a commercial cathode material for lithium secondary battery. The study especially focused on the charge state of Li ions and the magnitude of covalency around Li ions. The average voltage of lithium intercalation was calculated using pseudopotential method and the average intercalation voltage of $LiTiO_2$ was higher than that of $LiTiS_2$. It can be explained by the differences in Mulliken charge of lithium and the bond overlap population between the intercalated Li ions and anions in $LiTiO_2$ as well as $LiTiS_2$. The Mulliken charge, which means the ionicity of Li atom, was approximately 0.12 in $LiTiS_2$ and the bond overlap population (BOP) indicating the covalency between Ti and S was about 0.339. One the other hands, the Mulliken charge of lithium was about 0.79, which means that Li is fully ionized. The BOP, the covalency between Ti and O, was 0.181 in $LiTiO_2$. Because of high ionicity of Li and the weak covalency between Ti and the nearest anion, $LiTiO_2$ has a higher intercalation voltage than that of $LiTiS_2$.

Adsorption Behavior of Sr Ion on Calcium-Alginate-Chitosan (Calcium-Alginate-Chitosan의 스트론튬 이온 흡착 거동)

  • Lan, Dong;Bing, Deng;Lanlan, Ding;Qiong, Cheng;Yong, Yang;Yang, Du
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.557-565
    • /
    • 2014
  • Sodium alginate and chitosan are added to a $CaCl_2$ solution to prepare calcium-alginate-chitosan and calciumalginate gels. After dehydration through stoving, two types of adsorbent particles are obtained. The adsorption process of the particles obtained for low concentrations of $Sr^{2+}$ satisfies a second-order kinetic equation and the Freundlich adsorption model. The thermodynamic behaviors of the particles indicate that adsorption occurs via a spontaneous physical process. XPS pattern analysis is used to demonstrate the adsorption of $Sr^{2+}$ by calcium alginate and chitosan. By building an interaction model of the molecules of chitosan and alginate with $Ca^{2+}$ and $Sr^{2+}$ to calculate energy parameters, Fukui index, Mulliken charge, and Mulliken population, adsorption of $Sr^{2+}$ on the molecular chains of chitosan as well as the boundary of calcium-alginate-chitosan is observed to show weak stability; by contrast, adsorption between molecular chains is high.

The Effect of Lattice Topology on Benzyl Alcohol Adsorption on Kaolinite Surfaces: Quantum Chemical Calculations of Mulliken Charges and Magnetic Shielding Tensor (캐올리나이트 규산염 층과 벤질알코올의 반응에 대한 양자화학계산에서 결정학적 위상이 멀리켄 전하와 자기 차폐 텐서에 미치는 영향)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.313-325
    • /
    • 2007
  • In order to have better insights into adsorption of organic molecules on kaolinite surfaces, we performed quantum chemical calculations of interaction between three different model clusters of kaolinite siloxane surfaces and benzyl alcohol, with emphasis on the effect of size and lattice topology of the cluster on the variation of electron density and magnetic shielding tensor. Model cluster 1 is an ideal silicate tetrahedral surface that consists of 7 hexagonal rings, and model cluster 2 is composed of 7 ditrigonal siloxane rings with crystallographically distinct basal oxygen atoms in the cluster, and finally model cluster 3 has both tetrahedral and octahedral layers. The Mulliken charge analysis shows that siloxane surface of model cluster 3 undergoes the largest electron density transfer after the benzyl alcohol adsorption and that of model cluster 1 is apparently larger than that of model cluster 2. The difference of Mulliken charges of basal oxygen atoms before and after the adsorption is positively correlated with hydrogen bond strength. NMR chemical shielding tensor calculation of clusters without benryl alcohol shows that three different basal oxygen atoms (O3, O4, and O5) in model cluster 2 have the isotropic magnetic shielding tensor as $228.2{\pm}3.9,\;228.9{\pm}3.4,\;and\;222.3{\pm}3.0ppm$, respectively. After the adsorption, the difference of isotropic chemical shift varies from 1 to 5.5 ppm fer model cluster 1 and 2 while model cluster 2 apparently shows larger changes in isotropic chemical shift. The chemical shift of oxygen atoms is also positively correlated with electron density transfer. The current results show that the adsorption of benzyl alcohol on the kaolinite siloxane surfaces can largely be dominated by a weak hydrogen bonding and electrostatic force (charge-charge interaction) and demonstrate the importance of the cluster site and the lattice topology of surfaces on the adsorption behavior of the organic molecules on clay surfaces.

Molecular Orbital Calculation on the Conflguration of Hydroxyl Group in Hexagonal Hydroxyapatite

  • Chang, Myung-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.304-307
    • /
    • 2005
  • The possible configurations of hydroxyl group in hexagonal hydroxyapatite were identified through molecular orbital calculation. The molecular orbital interaction between O and H in hydroxyl column was analyzed using charge variation and Bond Overlap Population (BOP). We supposed 5 kinds of O-H bond configurations as cluster types of I, II, III, IV, and V. Mulliken's population analysis was applied to evaluate ionic charges of O, H, P, and Ca ions, and BOPs (Bond Overlap Populations) in order to discuss the bond strength change by the atomic arrangement. The stability of each O-H bond configuration was analyzed using bond overlap and ionic charge.

Calculation and Application of Partial Charges (부분 전하의 계산과 응용)

  • Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.226-230
    • /
    • 2010
  • Calculation of partial charge is important in chemistry. However, because there are many methods developed, it is of considerable interest to know how to calculate and apply properly to address various chemical problems. For basis set, usually double zeta quality is acceptable, and double zeta polarization function would be enough for most cases. To describe electronic state more accurately, Many electron configurations would be necessary to describe highly strained or anionic species. The NPA population introduced new concept about amide bonds, i.e., the planar geometry of nitrogen atom may not come from resonance, but from the lowering of p-orbital energy by electronegative carbonyl carbon atom. The issues for hypervalent atomic charges was also addressed by various charge derivation scheme. When the charge schemes were applied to organolithium compounds, the ionic nature of boding was revealed. This comes from the fact that previous Mulliken partial atomic charges overemphasized the covalent character, wihout much justification. The other partial charge derivation schemes such as NPA(natural population analysis), IPP (Integrated Projected Population) showed that much more ionic picture. ESP potential derived charges are generally believed to be suitable to describe intermolecular interactions, therefore they are used for molecular dynamics simulations and CoMFA (comparative molecular field analysis). The charge derivation schemes using multipole polarization was mainly applied to reproduce experimental infrared spectroscopy. In some reports these schemes are also suitable for intermecular electrostatic interactions. Charges derived from electron density gradient have shown the some bonds are not straight, but actually bent. The proper choice of charge-calculation method along with suitable level of theory and basis set are briefly discussed.

Determination of Net Atomic Charges Using a Modified Partial Equalization of Orbital Electronegativity Method V. Application to Silicon-Containing Organic Molecules and Zeolites

  • 석재은;노경태
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.915-923
    • /
    • 1995
  • The parameters for an empirical net atomic charge calculation method, Modified Partial Equalization of Orbital Electronegativity (MPEOE), were determined for the atoms in organosilicon compounds and zeolites. For the organosilicon family, the empirical parameters were determined by introducing both experimental and ab initio observables as constraints, these are the experimental and ab initio dipole moments, and the ab initio electrostatic potential of the organosilicon molecules. The Mulliken population was also introduced though it is not a quantum mechanical observable. For the parameter optimization of the atoms in the aluminosilicates, the dipole moments and the electrostatic potentials which calculated from the 6-31G** ab initio wave function were used as constraints. The empirically calculated atomic charges of the organosilicons could reproduce both the experimental and the ab inito dipole moments well. The empirical atomic charges of the aluminosilicates could reproduce the ab initio electrostatic potentials well also.

Synthesis, Antioxidant Activity and Fluorescence Properties of Novel Europium Complexes with (E)-2- or 4-hydroxy-N'-[(2-hydroxynaphthalen-1-yl)methylene]benzohydrazide Schiff Base

  • Liu, Lijun;Alam, Mohammad Sayed;Lee, Dong-Ung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3361-3367
    • /
    • 2012
  • Two novel Eu(III) complexes with notable properties have been successfully prepared with hydrazone Schiff base ligands, (E)-2-hydroxy-N'-[(2-hydroxynaphthalen-1-yl)methylene]benzohydrazide (3a) and (E)-4-hydroxy-N'-[(2-hydroxynaphthalen-1-yl)methylene]benzohydrazide (3b). DFT, FMO energy and Mulliken charge distribution studies of the ligands allowed us to hypothesize that their HC=N, > C=O and -OH (naphthyl) groups were involved in coordinating with the $Eu^{3+}$ ion. The eight coordination sites of the $Eu^{3+}$ ion were occupied by the three functional groups of the two ligands (3a or 3b) mentioned above and two water molecules. Similar UV, IR and fluorescence spectra indicated the presence of comparable coordination environments for the $Eu^{3+}$ ion in both complexes. Both the ligands and their complexes exhibited moderate DPPH radical scavenging activity. Moreover, it was found that the Eu(III) complexes exhibited fluorescence properties.

A Study on Electronic Structures of Spinel-Type Manganese Oxides for Lithium Ion Adsorbent using DV-Xα Molecular Orbital Method (DV-Xα 분자궤도법을 이용한 리튬이온 흡착제용 스피넬형 망간산화물의 전자상태에 관한 연구)

  • Kim, Yang-Su;Jeong, Gang-Seop;Lee, Jae-Cheon
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.274-278
    • /
    • 2002
  • Discrete-variational(DV)-$X{\alpha}$ method was applied to investigate the electronic structures of spinel- type manganese oxide which is well known to the high performance adsorbent or cathode material for lithium ion. The results of DOS(density of states) and Mulliken population analysis showed that Li was nearly fully ionized and interactions between Mn and O were strong covalent bond. The effective charge of Li and Mn was +0.77 and +1.44 respectively and the overlap population between Mn and O was 0.252 in $LiMn_2O_4$. These results from DV-X$\alpha$ method were well coincided with the experimental result by XPS analysis and supported the feasibility of theoretical interpretation for the $LiMn_2O_4$ compound.

Theoretical Calculations of Metol as Corrosion Inhibitor of Steel (강철 부식 방지제인 메톨에 대한 이론적 계산)

  • Gece, Gokhan
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.671-676
    • /
    • 2009
  • Described here for the first time is an investigation on geometrical and electronic molecular structure of metol (N-methyl-p-aminophenol sulphate) as corrosion inhibitor of steel using density functional theory (DFT) calculations. Quantum chemical parameters such as highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), energy gap ((${\Delta}E$), Mulliken charges (($q_M$) and natural atomic (($q_n$) charge have been calculated both for gas and aqueous phases by using B3LYP/6-31G+(d,p) basis set. The relation between the inhibition efficiency and quantum chemical parameters have been discussed in order to elucidate the inhibition mechanism of the title compound.

Theoretical Studies of Diels-Alder Reaction (Part II). A New United Ionic-Radical Mechanism of Diels-Alder Reaction (Diels-Alder 反應에 對한 理論的 硏究 (第2報). 新 United Ionic-Radical Mechanism)

  • Byung Kack Park
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 1973
  • The purpose of this paper is to investigate the mechanism of Diels-Alder reaction by assuming pseudo molecular complex (PMC) which has characters both of ionic and radical bonds. We treated this complex quantum-chemically as an intermediate between the configuration without charge transfer (radical bond character) and the configuration corresponding to the charge transfer from Diene (R) to Dienophile (S) (ionic bond character). The wave function for the complex could be expressed as: ${\psi}_{complex} = {\psi}(R,S) +{ \rho}{\psi}(R^+,S^-)$ where ${\rho}$ is the extent of charge transfer which is a constant to measure the ionic character of PMC. It has been noticed that${\rho}$is related to the difference between Fr + Fr' and Fs + Fs' in free valence (F) when R is united to S through atom r in R to atom s in S and atom r' in R to atom s' in S, That is, ${\rho}{\alpha}$ ${\Delta}F = (Fr + Fr') - (Fs + Fs')$. We have calculated ${\Delta}F$values for more than forty Diels-Alder reactions. The calculated values of ${\Delta}F$ is reversely proportional to the values of Brown's paralocalization energy (Lp) as well as Dewar's differences of delocalization energy$({\Delta}Edeloc.)$ with good linearity. This approach also presents a way of predicting the possibility and the easiness of diene synthesis between any two conjugate compounds. According to the considerations, it could be concluded that Diels-Alder reaction takes place through the united ionic-radical mechanism rather than the separated ionic or radical mechanism.

  • PDF