• Title/Summary/Keyword: Mudstone and shale

Search Result 28, Processing Time 0.025 seconds

Depositional Environment of the Cambrian Machari Formation in the Yeongweol Area, Gangweon Province, Korea

  • Chung, Gong-Soo;Lee, Eun-Kyung
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.72-86
    • /
    • 2002
  • The Middle to Late Cambrian Machari Formation in the Machari area, Yeongweol, Korea consists of 7 lithofacies and 3 facies associations, which are thought to be deposits of carbonate ramp (mid to outer ramp) to basin environment. These lithofacies are bedded lime mudstone, laminated lime mudstone, bioclastic/peloidal packstone to grainstone, poloidal/bioclastic wackestone, conglomerate, mottled lime mudstone, and shale. Bedded lime mudstone facies, a few cm thick lime mudstone alternating with shale layer, is believed to have been deposited by intermittent dilute turbidity currents. Laminated lime mudstone facies, alternating lime mudstone with laminated shale, is interpreted to have been formed by fine-grained turbidity currents. Bioclastic/peloidal packstone to grainstone facies was deposited by turbidity current and peloidal/bioclastic wackestone faceis was deposited by debris flow. Conglomerate facies is thought to be deposits of storm activities. Mottled lime mudstone facies is interpreted to have been formed by bioturbation. Shale facies is interpreted to have been formed by suspension settling. Seven lithofacies of the Machari Formation are divided into three facies associations. Facies association I consisted of bedded lime mudstone facies, mottled lime mudstone facies, conglomerate facies, and bioclastic/peloidal packstone to grainstone facies, is interpreted to have been deposited on the mid ramp. Facies assocaition II consisted of bedded lime mudstone facies, laminated lime mudstone facies, bioclastic/peloidal packstone to grainstone facies, and peloidal/bioclastic wackestone facies is thought to be deposits of the outer ramp. Facies association III consisted of laminated lime mudstone facies and shale facies is interpreted to have been formed on the basin environment.

Strength Characteristics of Sedimentary Rock in Daegu-Gyungbuk Area Followed by Saturation and Crack Initiation (대구경북지역 퇴적암의 포화 및 균열 유발에 따른 강도 특성)

  • Park, Sung-Sik;Kim, Seong-Heon;Bae, Do-Han
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.29-42
    • /
    • 2018
  • Shale and mudstone in Daegu-Gyungbuk area have low strength and resistance to weathering compared to other rocks. Therefore, it is necessary to evaluate their strength depending on the degree of saturation and crack development. In this study, shales and mudstones were collected from several construction sites in Daegu-Gyungbuk area. Their basic material properties such as porosity, SEM, chemical component, and durability were tested. A porosity (absorptivity) of mudstone was 31% (25%), which was 6 (8) times higher than that of shale. Some mudstone was easily disintegrated with water and it consisted of highly-active clay mineral such as smectite type. These rocks were prepared by small cube specimens for unconfined compression test. An unconfined compressive strength of dry rock was compared with saturated one. Microwave oven was operated step by step to stimulate void water within a saturated rock, which resulted into high temperature and micro crack initiation within rocks. A strength of microwaved rocks was compared with operation time and crack initiation. As a result, the average unconfined compressive strength of dry and saturated shale was 62 and 33 MPa, respectively. The strength of mudstone for each condition was 11 and 4 MPa. When a rock became saturated, its strength decreased by 47% and 64% for shale and mudstone at average. In addition to saturation, a rock was in the microwave for 15 secs, its strength decreased into 49% for shale and 52% for mudstone. When a microwave oven operated up to 20 sec, a rock was crushed into several pieces and its temperature was approximately 200 degrees.

Analysis on Component and Mechanical Characteristics for Crushed Stone of Excavated Rocks( I ) (지하굴착암 쇄석의 성분 및 역학적 특성 분석( I ))

  • 이상호;차완용;김영수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.74-82
    • /
    • 2003
  • In this paper, an experimental program was undertaken to test the analysis on Component and mechanical characteristics for crushed stone of excavated Rocks from Sandstone, Shale, Mudstone, for use as a new source of aggregate. Physical and mechanical properties, required for aggregate materials, of major constituents of rock wastes including Sandstone, Shale, Mudstone, Felsite, Basalt, Marl were measured in the laboratory Test results showed that the Shale, Felsite, Basalt tested in this study might possibly be used for construction aggregates. In case of Sandstone and Mudstone, some physical properties such as rock strength were generally adoptable but the aggregate characteristics were lower than required.

Thin-bedded, Fine-grained Lacustrine Turbidite Facies on the Northern Coast of Jindo and the Adjacent Area: Density underflow-induced, Ash-rich Turbidity Current Deposits

  • Chang Tae Soo;Chun Seung Soo
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.29-37
    • /
    • 1998
  • The sedimentary succession on the northern coast of Jindo and the adjacent area comprises the thinly bedded, fine-grained deposits of an epiclastic sandstone, siltstone, black shale/mudstone, and cherty mudstone (ca. 200m in vertical thickness), which are interpreted as the finely stratified turbidites mainly by density underflow-induced currents. Most deposits can be divided into eight facies: thin-bedded, ash-rich massive sandstone layer (mS), graded and laminated mudstone layer (glM), graded mudstone layer with ripple lamination (rM), laminated and graded siltstone layer (lgZ), finely laminated black shale layer (IBS), structureless mudstone layer (mM), thin-bedded cherty mudstone layer (lCM), and contorted and laminated mudstone layer (dlM), The thin-bedded, ash-rich sandstone facies is interpreted to be deposited from high-density turbid underflows during a relatively large flooding. Most thinly bedded mudstone facies would be deposited from low-density turbid underflows (turbidity currents) with some different hydrodynamic condition and sediment concentration during the high discharge of river water. Whereas the structureless mudstone facies may result from raining down of suspended sediment intermittently supplied by overflows and interflows. From the entire succession, graded and laminated mudstone layers interbedded with thin-bedded, ash-rich massive sandstone are dominant in the lower part of the succession, and graded mudstone layers with ripple lamination ripple lamination occur mainly in the middle part of it. On the other hand, iaminated/raded siltstone and contorted/laminated mudstone layers prevail in the upper part. The transition of facies association is suggestive of the continuous change of main depositional setting from basin plain to lower slope, which could be due to the movement of depocenter by the increase of sediment supply (volcanic activity).

  • PDF

The Engineering Characteristics of Weathered Sedimentary Rock Soils -ln Taegu and Kyungpook Areas- (퇴적암 풍화토의 공학적 특성 -대구.경북지역을 중심으로)

  • Kim, Yeong-Su;Lee, Sang-Bok;Jeong, Seong-Gwan
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.63-74
    • /
    • 1995
  • Much of Taegu and Kyungpook areas are composed of sedimentary rocks. This paper is concerned with the engineering characteristi os of weathered shale soils and mudstone soils. In this study, the engineering characteristics of weathered shale soils and mudstone soils are investigated by performing tests such as compaction, gradation, CBR permeability and crushability according to compaction energy and water content. The experiments were carried out to obtain the relationships of the ratio of surface area(Sw'/Sw) and the indez of crushing(IC) The results are found as follows : (1) Weathered shale soils are larger than weathered mudstone soils in maximun dry den sixty, but weathered shale soils are smaller than weathered mudstone soils in OMC. (2) Minimum permeability is found in OMC's 1~2% wet side, and the more compaction energy is high, the more the change's range of permeability becomes narrow. (3) There is linear correlation between the ratio of surface area and the indez of crushing. IC : 14.286sw'/Sw -8.429(r=0.9937) (4) Soaked CBR value becomes maximum in OMC's dry side, and it decreases as the water content increases. Whereas the more compaction energy is high the more unsoaked and soaked CBR values are high in OMC's dry side, unsoaked and soaked CBR values are opposed to that in OMC's wet side.

  • PDF

A Study on Anisotropy of Magnetic Susceptibility of Clastic Sedimentary Rocks in the Gyeongsang Basin (경상분지 쇄설성 퇴적암의 대자율 이방성 연구)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Hwang, Woong-Ki;Kwon, Hyun-Wook;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.8
    • /
    • pp.5-14
    • /
    • 2018
  • The grain size of clastic sedimentary rocks classifies the rock types and also causes of anisotropy of the rock. The anisotropy is one of the most important factors that dominates the strength and weathering behavior of rocks. The anisotropy of clastic sedimentary and igneous rocks in the Gyeongsang Basin including Yeongju, Daegu, and Busan were analyzed by magnetic susceptibility expressed by the degree of anisotropy and shape parameter. As the results of the study, the sandstone deposited under lacustrine environment unaffected by the external force shows 1.03 degree of anisotropy. The degrees of anisotropy of the rocks affected by faults and fault rocks show 1.06 and 1.14, respectively. The magnetic susceptibility of rocks is to decrease with the distance from the fault. A fresh mudstone and shale formed by fines show a similar magnitude of the degree of anisotropy to fault rock and correspond to oblate shape parameter due to their sedimentary structure. Due to these reasons, we need attention in design, construction, and maintenance of a structure constructed in mudstone and shale.

Engineering Characteristics and Problems in The Sedimentary rock (퇴적암의 공학적 특성 및 문제점)

  • 이영휘;김용준;정강복
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11b
    • /
    • pp.31-50
    • /
    • 2002
  • The sedimentary rocks deposited in Taegu and Kyongbuk region consist of various rocks such as the shale, mudstone, siltstone and sandstone. The characteristics of the sedimentary rocks are distinguished from those of igneous rocks and metamorphy rocks for the stratum caused by deposit environment. This study investigated engineering characteristics of the anisotropy, weathering rock and filled rock joints in the notable features of sedimentary rocks.

  • PDF