• 제목/요약/키워드: Mucus cell

검색결과 99건 처리시간 0.026초

Effect of Yam Yogurt on Colon Mucosal Tissue of Rats with Loperamide-induced Constipation

  • Jeon, Jeong-Ryae;Kim, Joo-Young;Choi, Joon-Hyuk
    • Food Science and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.605-609
    • /
    • 2007
  • The effects of lactic acid fermented yam yogurt (Yam/YG) on colon mucosal tissue were investigated in a loperamide-induced constipation rat models. Sprague-Dawley rats were fed for 6 weeks with 3 types of diets (normal, supplemented with lactic acid bacteria, and supplemented with Yam/YG), and were then administered loperamide intraperitoneally twice daily for 5 days. Administration of loperamide decreased fecal excretion and the moisture content of feces with increasing of numbers of pellets in the colon. On the histopathologic findings from hematoxylin and eosin (H& E) and alcian blue stainings, supplementation with Yam/YG resulted in the recovery of depleted goblet cells and mucin, and increased the numbers of Ki-67 positive cells, indicating restoration of colonic mucosa through cell proliferation and crypt regeneration against damages observed in crypt epithelial cells of loperamide-induced rats. These results indicate that Yam/YG improves evacuation and mucus production in the gastrointestinal tracts of constipated-induced rats.

Mucin in cancer: a stealth cloak for cancer cells

  • Wi, Dong-Han;Cha, Jong-Ho;Jung, Youn-Sang
    • BMB Reports
    • /
    • 제54권7호
    • /
    • pp.344-355
    • /
    • 2021
  • Mucins are high molecular-weight epithelial glycoproteins and are implicated in many physiological processes, including epithelial cell protection, signaling transduction, and tissue homeostasis. Abnormality of mucus expression and structure contributes to biological properties related to human cancer progression. Tumor growth sites induce inhospitable conditions. Many kinds of research suggest that mucins provide a microenvironment to avoid hypoxia, acidic, and other biological conditions that promote cancer progression. Given that the mucus layer captures growth factors or cytokines, we propose that mucin helps to ameliorate inhospitable conditions in tumor-growing sites. Additionally, the composition and structure of mucins enable them to mimic the surface of normal epithelial cells, allowing tumor cells to escape from immune surveillance. Indeed, human cancers such as mucinous carcinoma, show a higher incidence of invasion to adjacent organs and lymph node metastasis than do non-mucinous carcinoma. In this mini-review, we discuss how mucin provides a tumor-friendly environment and contributes to increased cancer malignancy in mucinous carcinoma.

단백질인산화효소 C 활성화제로 유도된 기도 뮤신 생성 및 유전자 발현과 점액 과분비 모델동물에 대한 수종(數種) 방제의 영향 (Effects of Several Oriental Medicines on Protein Kinase C Activator-Induced Production and Gene Expression of Airway Mucin and Animal Model for Airway Mucus Hypersecretion)

  • 임도희;박양춘
    • 동의생리병리학회지
    • /
    • 제22권6호
    • /
    • pp.1500-1508
    • /
    • 2008
  • The author investigated whether Chwiyeon-tang(PC), Haengso-tang(PH), Jawanchihyo-san(PJ) and Gamisocheongryong-tang(PS) significantly affect both PMA-induced mucin production and MUC5AC gene expression in airway epithelial cells and sulfur-dioxide-induced airway goblet cell hyperplasia and mucus hypersecretion animal model using rat. Possible cytotoxicity of each herbal medicine was assessed by measuring the survival and proliferation rate of NCI-H292 cells. Confluent NCI-H292 cells were pretreated for 30 min in the presence of PC, PH, PJ and PS, respectively, and treated with PMA(10 $ng/m{\ell}$), to assess the effect of each herbal medicine on PMA-induced mucin production by enzyme-linked immunosorbent assay(ELISA). Effects of each herbal medicine on PMA-induced MUC5AC gene expression from the same cells were investigated. Also, hypersecretion of airway mucus and goblet cell hyperplasia were induced by exposure of rats to $SO_2$ during 3 weeks. Effects of orally-administered PC, PH, PJ and PS during 1 week on intraepithelial mucosubstances and hyperplasia of goblet cells were examined using histological analysis after staining the epithelial tissue with PAS-alcian blue. (1) PC, PJ, PS and PH did not show significant effects on the survival and proliferation of NCI-H292 cells ; (2) PC, PJ and PS significantly decreased PMA-induced mucin production from NCI-H292 cells ; (3) PC, PJ and PS significantly inhibit the expression levels of PMA-induced MUC5AC gene in NCI-H292 cells ; (4) Among PC, PJ, PS and PH, only PS decreased $SO_2$-induced hyperplasia of airway goblet cells and intraepithelial mucosubstances. This result suggests that PC, PJ and PS can not only affect the production of mucin but also affect the expression of mucin gene and this can explain, at least in part, the traditional use of PC, PJ and PS for controlling airway diseases showing hypersecretion of mucus in oriental medicine.

기관(氣管) 상피세포 생리 및 약리 실험모델로서의 공기-액체 접면 일차배양법 연구 (Studies on the Air-Liquid Interface Culture as an Experimental Model for Physiology and Pharmacology of Tracheal Epithelial Cells)

  • 이충재;이재흔;석정호;허강민
    • Biomolecules & Therapeutics
    • /
    • 제10권4호
    • /
    • pp.281-286
    • /
    • 2002
  • In this study, we intended to get a preliminary data for establishing rat tracheal surface epithelial(RTSE) cell culture system as an experimental model for physiology and pharmacology of tracheal epithelial cells. Primary culture on the membrane support and application of the air-liquid interface system at the level of cell layer were performed. The cell growth rate and mucin production rate were measured according to the days in culture. The results were as follows: this culture system was found to manifest mucocilliary differentiation of rat tracheal epithelial cells, the cells were confluent and the quantity of produced and released mucin was highest on culture day 9, the mucin was mainly released to the apical side and tbe free $^3{H}$-glucosamine which was not incorporated to process of synthesis of mucin was left on the basolateral side. Taken together, we suggest that air-liquid interface culture system can be used as a substitute for immersion culture system and as an experimental model for in vivo mucus-hypersecretory diseases.

제주산 참다래가 Loperamide로 유도된 변비에 미치는 영향 (Effects of the Actindia chinensis on Loperamide-induced Constipation in Rat)

  • 김동건;진영건;진주연;김상철;김성철;한창훈;이영재
    • 한국자원식물학회지
    • /
    • 제24권1호
    • /
    • pp.61-68
    • /
    • 2011
  • 참다래 동결건조물을 2.5%, 5% 농도로 사료와 혼합하여 실험동물에 투여하고 실험 5일간 loperamide(2 mg/kg/day, s.c.)로 변비를 유도하여 참다래의 변비치료 및 예방 효과를 측정하였다. Lopermide를 단독 투여한 군은 정상대조군과 비교하여 변의 개수 및 중량이 유의적으로 감소하였으며 원위 결장 내 변 잔류의 증가 및 cecocolonic segment의 무게가 증가하였다. 참다래 동결건조물 및 loperamide를 투여한 군은 loperamide를 단독 투여한 군과 비교하여 변의 개수 및 중량이 유의적으로 증가하였으며 원위 결장 내 잔류 변 및 cecocolonic segment의 무게도 감소하였다. 이러한 결과는 참다래가 in vivo에서 변비 개선 효과가 있음을 보여준다. 변의 수분 함량에서도 loperamide로 변비를 유발시킨 군에서 감소하는 경향을 보였고 참다래 동결건조물 투여군에서 농도 의존적으로 증가하는 것을 확인 할 수 있었다. 조직학적 검사에서도 참다래 동결건조물 투여군의 원위 대장관에서 crypt cell내 점액의 증가와 장관내 분변의 점액질의 증가도 관찰되었다. In vitro 실험결과, 회장 적출 절편에서 참다래 동결건조물(2.5 mg/ml)을 전 처리 시 loperamide에 의한 장력과 진폭 억제가 부분적으로 차단되었으며 이러한 결과는 참다래 동결건조물의 변비 개선효과가 장의 운동성 촉진과 대장관 내 점액분비 증가에 의한 대장관 내용물의 이동성증가와 관련이 있음을 시사한다.

흡입마취제가 토끼의 하부호흡기도 점액분비세포에 미치는 영향 (Effects of Inhalation Anesthetics on Mucus Secretion of Goblet Cells at Lower Respiratory Tract in Rabbits)

  • 박우대;배춘식
    • 한국임상수의학회지
    • /
    • 제16권2호
    • /
    • pp.339-351
    • /
    • 1999
  • Excess secretion of goblet cell stimulated by inhalation anesthetics have side effects during operation or postoperative care. Mucosubstances, which are almost secreted by goblet cells in the epithelium of the respiratory tract, are secreted by a direct irritation of inhalation anesthetics. This study was carried out to compare the differences of mucus secretion on lower respiratory tract stimulated by ethyl ether, halothane and isoflurane. Total of 24 rabbits were used as experimental animals. The trachea and the 1st bronchi were fixed in 10% neutral buffered formalin. After embedding in paraffin, the specimens were sectioned to a thickness of 6 ${\mu}{\textrm}{m}$, and PAS-H, Alcian blue pH 2.5 and Alcian blue pH 1.0 stains were performed for the observation of the composition and the quantity of the mucus. The results were as follows; Ethyl ether and isoflurane irritated the mucous membrane of the respiratory tract. Ethyl ether irritated more than isoflurane. Halothane irritated the mucous membrane, but its effect was minimal and had little influences during operation. In the specimens stained with PAS-H, Alcian blue pH 2.5 and Alcian blue pH 1.0, the mucosubstance lining the cilia and in the goblet cells of the trachea and 1st bronchi were the strongly PAS-H reactive mucosubstances, moderately Alcian blue pH 2.5 and Alcian blue pH 1.0. The PAS-H reactive mucosubstance were polysaccharides, neutral mucopolysaccharides, mucoproteins, glycoproteins and glycolipids. Trachea was easily affected than bronchi by inhalation anesthetics. Consequently, it is suggested that because halothane does not irritates respiratory mucosal secretion, its application may be efficient to the depressed respiratory system.

  • PDF

Physiological understanding of host-microbial pathogen interactions in the gut

  • Lee, Sei-Jung;Choi, Sang Ho;Han, Ho Jae
    • 대한수의학회지
    • /
    • 제56권2호
    • /
    • pp.57-66
    • /
    • 2016
  • The gut epithelial barrier, which is composed of the mucosal layer and the intestinal epithelium, has multiple defense mechanisms and interconnected regulatory mechanisms against enteric microbial pathogens. However, many bacterial pathogens have highly evolved infectious stratagems that manipulate mucin production, epithelial cell-cell junctions, cell death, and cell turnover to promote their replication and pathogenicity in the gut epithelial barrier. In this review, we focus on current knowledge about how bacterial pathogens regulate mucin levels to circumvent the epithelial mucus barrier and target cell-cell junctions to invade deeper tissues and increase their colonization. We also describe how bacterial pathogens manipulate various modes of epithelial cell death to facilitate bacterial dissemination and virulence effects. Finally, we discuss recent investigating how bacterial pathogens regulate epithelial cell turnover and intestinal stem cell populations to modulate intestinal epithelium homeostasis.

Study of a BALB/c Mouse Model for Allergic Asthma

  • Yang, Young-Su;Yang, Mi-Jin;Cho, Kyu-Hyuk;Lee, Kyu-Hong;Kim, Yong-Bum;Kim, Jin-Sung;Kang, Myung-Gyun;Song, Chang-Woo
    • Toxicological Research
    • /
    • 제24권4호
    • /
    • pp.253-261
    • /
    • 2008
  • Allergic asthma is a worldwide public health problem and a major socioeconomic burden disease. It is a chronic inflammatory disease marked by airway eosinophilia and goblet cell hyperplasia with mucus hypersecretion. Mouse models have proven as a valuable tool for studying human asthma. In the present report we describe a comparison of mouse asthma models. The experiments were designed as follows: Group I was injected with ovalbumin (OVA, i.p.) on day 1 and challenged with 1% OVA (aerosol exposure) on days $14{\sim}21$. Group II was injected on day 1, 14 and aerosol-immunized on days $14{\sim}21$. Group III was injected on day 1, 14 and immunized by 1% OVA aerosol on days $18{\sim}21$. We assessed asthma induction by determining the total number of white blood cells (WBC) and eosinophils as well as by measuring cytokine levels in bronchoalveolar lavage fluid (BALF). In addition, we evaluated the histopathological changes of the lungs and determined the concentration of immunoglobulin E (IgE) in serum. Total WBC, eosinophils, Th2 cytokines (IL-4, IL-13) and IgE were significantly increased in group I relative to the other groups. Moreover, histopathological studies show that group I mice show an increase in the infiltration of inflammatory cell-in peribronchial and perivascular areas as well as an overall increase in the number of mucus-containing goblet cells relative to other groups. These data suggest that group I can be a useful model for the study of human asthma pathobiology and the evaluation of existing and novel therapeutic agents.

상지(桑枝) 목초액이 호흡기 객담 과다분비에 미치는 영향 (Effect of Wood Vinegar Produced from Morus alba on Hypersecretion of Airway Mucus)

  • 김호;정혜미;김솔리;서운교
    • 대한한방내과학회지
    • /
    • 제31권3호
    • /
    • pp.650-666
    • /
    • 2010
  • Objectives : In this study, the author tried to investigate whether wood vinegar produced from Morus alba (MA) significantly affects the increase in airway epithelial mucosubstances and hyperplasia of tracheal goblet cells of rats, and in vitro airway mucin secretion and PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production / gene expression from human airway epithelial cells. Materials and Methods : For the in vivo experiment, the author induced hypersecretion of airway mucus and goblet cell hyperplasia by exposure of rats to SO2 over 3 weeks. Effect of orally-administered MA over 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats and hyperplasia of goblet cells were assessed using histopathological analysis after staining the epithelial tissue with alcian blue. For the in vitro experiment, confluent RTSE cells were chased for 30 min in the presence of MA to assess the effect of MA on mucin secretion by enzyme-linked immunosorbent assay (ELISA). Also, effects of MA on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of MA and treated with PMA (10 ng/ml), EGF (25 ng/ml) or TNF-alpha (0.2 nm) for 24 hrs, to assess both effects of MA on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production by enzyme-linked immunosorbent assay (ELISA) and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). Possible cytotoxicities of MA in vitro were assessed by examining LDH release from RTSE cells and the rate of survival and proliferation of NCI-H292 cells. In vivo liver and kidney toxicities of MA were evaluated by measuring serum GOT/GPT activities and serum BUN/creatinine concentrations of rats after administering MA orally. Results : 1. MA decreased the amount of intraepithelial mucosubstances of rats exposed to sulfur dioxide inhalationally. 2. MA decreased in vitro mucin secretion from cultured RTSE cells. 3. MA significantly inhibited PMA-, EGF-, and TNF-alpha-induced MUC5AC mucin productions and the expression levels of MUC5AC mRNA from NCI-H292 cells. 4. MA did not show either in vitro or in vivo hepatic or renal toxicities. Conclusion : The results from this study suggests that MA can regulate the secretion, production and gene expression of airway mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion and does not show in vivo toxicity to liver and kidney functions after oral administration. Effects of MA should be further studied using animal experimental models that simulate the diverse pathophysiology of respiratory diseases via future research.

필용방감길탕이 기도 뮤신의 분비, 생성, 유전자 발현 및 점액 과다 분비에 미치는 영향 (Effect of Piryongbanggamgil-tang on Airway Mucin Secretion, Production, Gene Expression and Hypersecretion of Mucus)

  • 김윤영;민상연;김장현
    • 대한한방소아과학회지
    • /
    • 제28권2호
    • /
    • pp.56-71
    • /
    • 2014
  • Objectives In this study, the author tried to investigate whether piryongbang-gamgil-tang (PGGT) significantly affect in vitro airway mucin secretion, PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production / gene expression from human airway epithelial cells and increase in airway epithelial mucosubstances and hyperplasia of tracheal goblet cells of rats. Materials and Methods For in vitro experiment, confluent RTSE cells were chased for 30 min in the presence of PGGT to assess the effect of PGGT on mucin secretion by enzyme-linked immunosorbent assay (ELISA). Also, effect of PGGT on PMA- or EGFor TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of PGGT and treated with PMA (10 ng/ml) or EGF (25 ng/ml) or TNF-${\alpha}$ (0.2 nM) for 24 hrs, to assess both effect of PGGT on PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production by ELISA and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). For in vivo experiment, the author induced hypersecretion of airway mucus and goblet cell hyperplasia by exposure of rats to $SO_2$ during 3 weeks. Effect of orally-administered PGGT during 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats and hyperplasia of goblet cells were assesed by using histopathological analysis after staining the epithelial tissue with alcian blue. Possible cytotoxicities of PGGT in vitro were assessed by examining LDH release from RTSE cells and the rate of survival and proliferation of NCI-H292 cells. In vivo liver and kidney toxicities of PGGT were evaluated by measuring serum GOT/GPT activities and serum BUN/creatinine concentrations of rats after administering PGGT orally. Results (1) PGGT did not affect in vitro mucin secretion from cultured RTSE cells. (2) PGGT significantly inhibited PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions and the expression levels of MUC5AC mRNA from NCI-H292 cells. (3) PGGT decreased the amount of intraepithelial mucosubstances and showed the tendency of expectorating airway mucus already produced. (4) PGGT increased LDH release from RTSE cells. However, PGGT did not show in vivo liver and kidney toxicities and cytotoxicity to NCI-H292 cells. Conclusion The result from this study suggests that PGGT can regulate the production and gene expression of airway mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion and do not show in vivo toxicity to liver and kidney functions after oral administration. Effect of PGGT with their components should be further studied using animal experimental models that reflect the diverse pathophysiology of respiratory diseases through future investigations.