• 제목/요약/키워드: Mucosal immune response

검색결과 70건 처리시간 0.027초

석창포가 알레르기성 비염 유발 동물 모델에 미치는 영향 (The Effects of Acorus gramineus on Changes of Nasal Tissue in Allergic Rhinitis Model)

  • 정의령;김윤범
    • 한방안이비인후피부과학회지
    • /
    • 제21권1호
    • /
    • pp.16-25
    • /
    • 2008
  • Background & Objectives : Rhinitis is an inflammation of nasal mucosa. The major symtoms are watery rhinorrhea, sneezing, itchy nose, and nasal obstruction. Allergic rhinitis is an immune reaction by allergen. So, we aimed to determine therapeutic effects of Acorus gramineus by observing changes in IL-4, $IFN-{\gamma}$ and the nasal mucosal tissue. Materials and Methods : Fifteen BALC/c mice were divided into three groups : m group(which ate low concentrated herbal medicine ), M group(which ate high concentrated herbal medicine) and control group. Control and experimental group were induced allergic rhinitis by Ovalbumin as the method of Levin and Vaz. Experimental group was orally administered the Acorus gramineus extract for 28days. We observed changes in IL-4, $IFN-{\gamma}$ and trans aminase(AST, ALT) in blood and nasal mucosa and submucosa. Results : There were no significant changes statistically in IL-4 and $IFN-{\gamma}$ in blood(p<0.05). And there were no hepatotoxicity with Acorus gramineus extract. Histologically, almost no inflammatory response in treatment group(m,M) against that there were inflammatory response(increased goblet cells, dilated vessels, edema of bowman's glands and injured olfactory hairs) in control group. Conclusion : According to above results, it is supposed that Acorus gramineus has no immunological effects on allergic rhinitis.

  • PDF

Increased Innate Lymphoid Cell 3 and IL-17 Production in Mouse Lamina Propria Stimulated with Giardia lamblia

  • Lee, Hye-Yeon;Park, Eun-Ah;Lee, Kyung-Jo;Lee, Kyu-Ho;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • 제57권3호
    • /
    • pp.225-232
    • /
    • 2019
  • Innate lymphoid cells (ILCs) are key players during an immune response at the mucosal surfaces, such as lung, skin, and gastrointestinal tract. Giardia lamblia is an extracellular protozoan pathogen that inhabits the human small intestine. In this study, ILCs prepared from the lamina propria of mouse small intestine were incubated with G. lamblia trophozoites. Transcriptional changes in G. lamblia-exposed ILCs resulted in identification of activation of several immune pathways. Secretion of interleukin (IL)-17A, IL-17F, $IL-1{\beta}$, and interferon-${\gamma}$ was increased, whereas levels of IL-13, IL-5, and IL-22, was maintained or reduced upon exposure to G. lamblia. Goup 3 ILC (ILC3) was found to be dominant amongst the ILCs, and increased significantly upon co-cultivation with G. lamblia trophozoites. Oral inoculation of G. lamblia trophozoites into mice resulted in their presence in the small intestine, of which, the highest number of parasites was detected at the 5 days-post infection. Increased ILC3 was observed amongst the ILC population at the 5 days-post infection. These findings indicate that ILC3 from the lamina propria secretes IL-17 in response to G. lamblia, leading to the intestinal pathology observed in giardiasis.

USE OF PREBIOTICS, PROBIOTICS AND SYNBIOTICS IN CLINICAL IMMUNONUTRITION

  • Bengmark Stig
    • 한국식품영양과학회:학술대회논문집
    • /
    • 한국식품영양과학회 2001년도 International Symposium on Food,Nutrition and Health for 21st Century
    • /
    • pp.187-231
    • /
    • 2001
  • It is a recent observation that about 80 per cent of the body's immune system is localized in the gastrointestinal tract. This explains to a large extent why eating right is important for the modulation the immune response and prevention of disease. I addition it is increasingly recognized that the body has an important digestive system also in the lower gastrointestinal tract where numerous important substances are released by microbial enzymes and absorbed. Among these substances are short chain fatty acids, amino acids, various carbohydrates, polyamines, growth factors, coagulation factors, and many thousands of antioxidants, not only traditional vitamins but numerous flavonoids, carotenoids and similar plant- and vegetable produced antioxidants. Also consumption of health-promoting bacteria (probiotics) and vegetable fibres (prebiotics) from numerous sources are known to have strong health-promoting influence. It has been calculated that the intestine harbours about 300 000 genes, which is much more than the calculated about 60000 for the rest of the human body, indicating a till today totally unexpected metabolic activity in this part of the GI tract. There are seemingly several times more active enzymes in the intestine than in the rest of the body, ready to release hundred thousand or more of substances important for our health and well-being. In addition do the microbial cells produce signal molecules similar to cytokines but called bacteriokines and nitric oxide, with provide modulatory effects both on the mucosal cells, the mucosa-associated lymphoid system (MALT) and the rest of the immune system. Identification of various fermentation products, and often referred to as synbiotics, studies of their role in maintaining health and well-being should be a priority issue during the years to come.

  • PDF

경구투여 백신 후보물질로서의 Helicobacter pylori 외막 단백질의 조사

  • 박형배;최태부
    • 한국미생물·생명공학회지
    • /
    • 제25권2호
    • /
    • pp.129-136
    • /
    • 1997
  • Helicobacter pylori is a spiral-shaped, microaerophilic human gastric pathogen causing chronic-active gastritis in association with duodenal ulcer and gastric cancer. To investigate the possibility of H. pylori outer membrane proteins (OMPS) as the oral vaccine antigens, sarcosine-insoluble outer membrane fraction has been prepared from H. pylori NCTC 11637. The major OMPs having apparent molecular masses of 62 kDa, 54 kDa and 33 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which were identified as urease B subunit (UreB), heat shock protein (Hsp54 kDa) and urease A subunit (UreA), respectively. Minor protein bands of 57 kDa, 52 kDa, 40 kDa, 36 kDa and 31 kDa were also observed. The antigenicity of H. pylori OMPs and antigenic cross-reactivity among the strains were determined by immunoblot analysis using anti-H. pylori OMPs antisera or intestinal lavage solutions. The results showed that UreB, Hsp54 kDa, UreA and 40 kDa proteins vigorously stimulated mucosal immune response rather than systemic immunity. From this results, these proteins seemed to be useful as the antigen candidates for the oral vaccine. The immunoblotting results with surface proteins from eight isolated H. pylori strains were similar to that of H. pylori NCTC 11637. The IgA which had been arised from oral administration of H. pylori OMPs, was able to bind H. pylori whole-cells.

  • PDF

면역보조제의 작용 및 개발 (A Current Research Insight into Function and Development of Adjuvants)

  • 손은수;손은화;표석능
    • IMMUNE NETWORK
    • /
    • 제4권3호
    • /
    • pp.131-142
    • /
    • 2004
  • In recent years, adjuvants have received much attention because of the development of purified subunit and synthetic vaccines which are poor immunogens and require adjuvants to evoke the immune response. Therefore, immunologic adjuvants have been developed and testing for most of this century. During the last years much progress has been made on development, isolation and chemical synthesis of alternative adjuvants such as derivatives of muramyl dipeptide, monophosphoryl lipid A, liposomes, QS-21, MF-59 and immunostimulating complexes (ISCOMS). Biodegradable polymer microspheres are being evaluated for targeting antigens on mucosal surfaces and for controlled release of vaccines with an aim to reduce the number of doses required for primary immunization. The most common adjuvants for human use today are aluminum hydroxide and aluminum phosphate. Calcium phosphate and oil emulsions have been also used in human vaccination. The biggest issue with the use of adjuvants for human vaccines is the toxicity and adverse side effects of most of the adjuvant formulations. Other problems with the development of adjuvants include restricted adjuvanticity of certain formulations to a few antigens, use of aluminum adjuvants as reference adjuvant preparations under suboptimal conditions, non-availability of reliable animal models, use of non-standard assays and biological differences between animal models and humans leading to the failure of promising formulations to show adjuvanticity in clinical trials. The availability of hundreds of different adjuvants has prompted a need for identifying rational standards for selection of adjuvant formulations based on safety and sound immunological principles for human vaccines. The aim of the present review is to put the recent findings into a broader perspective to facilitate the application of these adjuvants in general and experimental vaccinology.

Effects of IL-3 and SCF on Histamine Production Kinetics and Cell Phenotype in Rat Bone Marrow-derived Mast Cells

  • Lee, Haneul Nari;Kim, Chul Hwan;Song, Gwan Gyu;Cho, Sung-Weon
    • IMMUNE NETWORK
    • /
    • 제10권1호
    • /
    • pp.15-25
    • /
    • 2010
  • Background: Rat mast cells were regarded as a good model for mast cell function in immune response. Methods: Rat bone marrow mast cells (BMMC) were prepared both by recombinant rat IL-3 (rrIL-3) and by recombinant mouse stem cell factor (rmSCF), and investigated for both proliferation and differentiation in time course. Rat BMMC was induced by culture of rat bone marrow cells (BMCs) in the presence of both rrIL-3 (5 ng/ml) and rmSCF (5 ng/ml). Culture media were changed 2 times per week with the cell number condition of $5{\times}10^4/ml$ in 6 well plate. Proliferation was analyzed by cell number and cell counting kit-8 (CCK-8) and differentiation was by rat mast cell protease (RMCP) II and histamine. Results: Cell proliferation rates reached a maximum at 8 or 11 days of culture and decreased thereafter. However, both RMCP II production and histamine synthesis peaked after 11 days of culture. By real time RT-PCR, the level of histidine decarboxylase mRNA was more than 500 times higher on culture day 11 than on culture day 5. By transmission electron microscopy, the cells were heterogeneous in size and contained cytoplasmic granules. Using gated flow cytometry, we showed that cultured BMCs expressed high levels of $Fc{\varepsilon}RI$ and the mast cell antigen, ganglioside, on culture day 11. Conclusion: These results indicate that rat BMMCs were generated by culturing BMCs in the presence of rrII-3 and rmSCF and that the BMMCs have the characteristics of mucosal mast cells.

Hisrological Alterations and Immune Response Induced by Pet Toxin During Colonization with Enteroaggregative Escherichia coil (EAEC) in a Mouse Model Infection

  • Eslava, Carlos;Sainz, Teresita;Perez, Julia;Fresan, Ma.Cristina;Flores, Veronica;Jimenez, Luis;Hernandez, Ulises;Herrera, Ismael
    • Journal of Microbiology
    • /
    • 제40권2호
    • /
    • pp.91-97
    • /
    • 2002
  • Enteroaggregative E. coil (EAEC) is an important aethiological causal agent of diarrhea in people of developed and undeveloped countries. Different in vitro and in vivo models have been proposed to study the pathdgenic and immune mechanisms of EAEC infaction. The aim of this study was to analyze whether BALB/c mice could be used as an animal model to study EAEC pathogenesis Six-week-old BALB/c mice were inoculated with EAEC strain 042 (044:H88) nalidixic acid resistant, and re-inoc-ulated ten days after. Mice feces were monitored for the presence of the EAEC strain over a period of 20 days . Bacteria were enumerated on MacConkey agar containing 100$\mu$g of nalidixic acid per ml. Results showed that 35% of the animals were colonized for 3 days, 15% for 5 and 10% for more than 7 days . After re-inoculation only 16% of the animals remained colonized for more than 3 days. During the necropsy, the intestinal fluid of same of the infected animals presented mucus and blood. Six of these fluids showed the presence of IgA antibodies againset Pet toxin and IgG natibodies raised against the toxin were also detected in the animal serum. Histopathologic evidence confirms the stimulation of mucus hypersecretion, an increased amount of goblet cells and the presence of bacterial aggregates in the apical surfaces of intestinal epithelial cells. Edema was present in the submucosa. These results suggest that BALB/c mice could be used as an animal model for in vivo study of EAEC infection.

AT9283, 1-Cyclopropyl-3-(3-(5-(Morpholinomethyl)-1H-Benzo[d] Imidazole-2-yl)-1H-Pyrazol-4-yl) Urea, Inhibits Syk to Suppress Mast Cell-Mediated Allergic Response

  • Kim, Su Jeong;Choi, Min Yeong;Min, Keun Young;Jo, Min Geun;Kim, Jie Min;Kim, Hyung Sik;Kim, Young Mi
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.520-528
    • /
    • 2022
  • Mast cells are an effector cell that plays a pivotal role in type I hypersensitive immune responses. Mast cells exist in connective tissues, such as skin and mucosal tissue, and contain granules which contain bioactive substances such as histamine and heparin in cells. The granules of mast cells are secreted by antigen stimulation to cause the type I allergic hypersensitivity. In addition, stimulated by antigen, mast cells synthesize and secrete various eicosanoids and cytokines. While AT9283 is known to have anticancer effects, the therapeutic effect of AT9283 on allergic disorders is completely unknown. In this study, it was found that AT9283 reversibly inhibited antigen-IgE binding-induced degranulation in mast cells (IC50, approx. 0.58 μM) and suppressed the secretion of the inflammatory cytokines IL-4 (IC50, approx. 0.09 μM) and TNF-α (IC50, approx. 0.19 μM). For a mechanism of mast cell inhibition, while not inhibiting Syk phosphorylation, AT9283 suppressed the activation of LAT, a downstream substrate protein of Syk, in a dose-dependent manner. As expected, AT9283 also inhibited the activation of PLCγ1 and Akt, downstream signaling molecules of Syk/LAT, and MAP kinases such as JNK, Erk1/2, and P38. In an in vitro protein tyrosine kinase assay, AT9283 directly inhibited Syk activity. Next, AT9283 dose-dependently inhibited passive cutaneous anaphylaxis (PCA), an IgE-mediated allergic acute response, in mice (ED50, approx. 34 mg/kg, p.o.). These findings suggest that AT9283 has potential to use as a new drug for alleviating the symptoms of IgE-mediated allergic disorders.

Immune Responses of Mice Intraduodenally Infected with Toxoplasma gondii KI-1 Tachyzoites

  • Shin, Eun-Hee;Chun, Yeoun-Sook;Kim, Won-Hee;Kim, Jae-Lip;Pyo, Kyoung-Ho;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • 제49권2호
    • /
    • pp.115-123
    • /
    • 2011
  • Toxoplasma gondii Korean isolate (KI-1) tachyzoites were inoculated intraduodenally to BALB/c mice using a silicon tube, and the course of infection and immune responses of mice were studied. Whereas control mice, that were infected intraperitoneally, died within day 7 post-infection (PI), the intraduodenally infected mice survived until day 9 PI (infection with $1{\times}10^5$ tachyzoites) or day 11 PI (with $1{\times}10^6$ tachyzoites). Based on histopathologic (Giemsa stain) and PCR (B1 gene) studies, it was suggested that tachyzoites, after entering the small intestine, invaded into endothelial cells, divided there, and propagated to other organs. PCR appeared to be more sensitive than histopathology to detect infected organs and tissues. The organisms spread over multiple organs by day 6 PI. However, proliferative responses of splenocytes and mesenteric lymph node (MLN) cells in response to con A or Toxoplasma lysate antigen decreased significantly, suggesting immunosuppression. Splenic $CD4^+$ and $CD8^+$ T-Iymphocytes showed decreases in number until day 9 PI, whereas IFN-${\gamma}$ and IL-10 decreased slightly at day 6 PI and returned to normal levels by day 9 PI. No TNF-${\alpha}$ was detected throughout the experimental period. The results showed that intraduodenal infection with KI-1 tachyzoites was successful but did not elicit significant mucosal immunity in mice and allowed dissemination of T. gondii organisms to systemic organs. The immunosuppression of mice included reduced lymphoproliferative responses to splenocytes and MLN cells to mitogen and low production of cytokines, such as IFN-${\gamma}$, TNF-${\alpha}$, and IL-10, in response to T. gondii infection.

Indigo Naturalis in Inflammatory Bowel Disease: mechanisms of action and insights from clinical trials

  • Hyeonjin Kim;Soohyun Jeong;Sung Wook Kim;Hyung-Jin Kim;Dae Yong Kim;Tae Han Yook;Gabsik Yang
    • 대한약침학회지
    • /
    • 제27권2호
    • /
    • pp.59-69
    • /
    • 2024
  • This study investigates the therapeutic potential of Indigo Naturalis (IN) in treating a Inflammatory Bowel Disease (IBD). The objective is to comprehensively examine the effects and pharmacological mechanisms of IN on IBD, assessing its potential as an novel treatment for IBD. Analysis of 11 selected papers is conducted to understand the effects of IN, focusing on compounds like indirubin, isatin, indigo, and tryptanthrin. This study evaluates their impact on Disease Activity Index (DAI) score, colon length, mucosal damage, and macrophage infiltration in Dextran Sulfate Sodium (DSS)-induced colitis mice. Additionally, It investigate into the anti-inflammatory mechanisms, including Aryl hydrocarbon Receptor (AhR) pathway activation, Nuclear Factor kappa B (NF-κB)/nod-like receptor family pyrin domain containing 3 (NLRP3)/Interleukin 1 beta (IL-1β) inhibition, and modulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/NF-κB and Mitogen Activated Protein Kinase (MAPK) pathways. Immunomodulatory effects on T helper 17 (Th17)/regulatory T cell (Treg cell) balance and Glycogen synthase kinase-3 beta (GSK3-β) expression are also explored. Furthermore, the study addresses the role of IN in restoring intestinal microbiota diversity, reducing pathogenic bacteria, and increasing beneficial bacteria. The findings reveal that IN, particularly indirubin and indigo, demonstrates significant improvements in DAI score, colon length, mucosal damage, and macrophage infiltration in DSS-induced colitis mice. The anti-inflammatory effects are attributed to the activation of the AhR pathway, inhibition of inflammatory pathways, and modulation of immune responses. These results exhibit the potential of IN in IBD treatment. Notably, the restoration of intestinal microbiota diversity and balance further supports its efficacy. IN emerges as a promising and effective treatment for IBD, demonstrating anti-inflammatory effects and positive outcomes in preclinical studies. However, potential side effects necessitate further investigation for safe therapeutic development. The study underscores the need for future research to explore a broader range of active ingredients in IN to enhance therapeutic efficacy and safety.