• Title/Summary/Keyword: Mucosal epithelial cells

Search Result 104, Processing Time 0.03 seconds

Development of adjuvant for effective oral vaccine application (경구백신의 효율적인 적용을 위한 면역 보조제 개발)

  • Kim, Sae-Hae;Seo, Ki-Weon;Kim, Ju;Jang, Yong-Suk
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.283-291
    • /
    • 2010
  • Vaccine is one of the best known and most successful applications of immunological theory to human health and it protects human life through inducing the immune response in systemic compartment. However, when we consider the fact that mucosal epithelium is exposed to diverse foreign materials including viruses, bacteria, and food antigens and protects body from entry of unwanted materials using layer of tightly joined epithelial cells, establishing the immunological barrier on the lining of mucosal surfaces is believed to be an effective strategy to protect body from unwanted antigens. Unfortunately, however, oral mucosal site, which is considered as the best target to induce mucosal immune response due to application convenience, is prone to induce immune tolerance rather than immune stimulation. Since intestinal epithelium is tightly organized, a prerequisite for successful mucosal vaccination is delivery of antigen to mucosal immune induction site including a complex system of highly specialized cells such as M cells. Consequently, development of efficient mucosal adjuvant capable of introducing antigens to mucosal immune induction site and overcome oral tolerance is an important subject in oral vaccine development. In this review, various approaches on the development of oral mucosal adjuvants being suggested for effective oral mucosal immune induction.

Turnover of biliaiy epithelial cells in Clonorchis sinensis infected rats (간흡충에 감염된 흰쥐 담관 상피세포의 증식 양상)

  • 홍성태;고원규
    • Parasites, Hosts and Diseases
    • /
    • v.31 no.2
    • /
    • pp.83-90
    • /
    • 1993
  • We performed bromodeoxyuridine (BrdU) staining to observe the proliferation pattern of epithelial cells on the biliaJy mucosa in Clonorchis sinensis infection. Albino rats were infected with 100 metacercariae each and their livers were processed for histopathological observation after BrdU injection. Five to six sites in the liver of a rat were selected for paraffin section, and stained immunohistochemically to visualize BrdU incorporating cells. The flukes were mainly in the common bile duct and right or left hepatic bile ducts. The proportion of stained epithelial cells in the infected bile ducts where the worms were found on the section was 2.9-10.2% at 1 week after infection. 7.3-12.8% at 2 weeks, 7.3-13.4% at 5 weeks, and 8.4-14.8% at 15 weeks while in the non-infected ducts o to 2.7% cells were stained. The stained cells were mainly at the base of the mucosal layer. It is suggested that mucosal epithelial cells of the bile ducts infected with C. sinensis become hyperplastic mainly by direct and local stimulation of the worms.

  • PDF

An Electron Microscopic Study on the Mucosal Epithelial Cell in the Small Intestine of Ground Squirrel, Tamias sibiricus asiaticus Gmelin. (다람쥐(Tamias sibiricus asiaticus Gmelin) 소장 점막 상피세포의 전자현미경적 연구)

  • Roh, Young-Bok;Chung, Kyung-A;Chung, Ji-Sook;Kim, Jung-Sam;Kim, Il
    • The Korean Journal of Zoology
    • /
    • v.38 no.3
    • /
    • pp.388-394
    • /
    • 1995
  • We investigated ultrastuctural change of small intestinal mucosal epithelial cell, columnar cell and mucous cell, of hibernating ground squirrel during activating and hibernating stages. In active columnar cells, many mitochondria and rough endoplasmic reticulum were observed. In hibernating columnar cells, more free nhosome than rough endoplasmic reticulum were observed. In active mucous cells, large and many mucosal granules, mitochondria and rough endoplasmic reticulum were observed. Mucosal granules have been secreted excellently. In hibernating mucous cells, small and little mucosal granules and many free ribosome were observed.

  • PDF

Expression of the ATP-gated $P2X_7$ Receptor on M Cells and Its Modulating Role in the Mucosal Immune Environment

  • Kim, Sae-Hae;Lee, Ha-Yan;Jang, Yong-Suk
    • IMMUNE NETWORK
    • /
    • v.15 no.1
    • /
    • pp.44-49
    • /
    • 2015
  • Interactions between microbes and epithelial cells in the gastrointestinal tract are closely associated with regulation of intestinal mucosal immune responses. Recent studies have highlighted the modulation of mucosal immunity by microbe-derived molecules such as ATP and short-chain fatty acids. In this study, we undertook to characterize the expression of the ATP-gated $P2X_7$ receptor ($P2X_7R$) on M cells and its role in gastrointestinal mucosal immune regulation because it was poorly characterized in Peyer's patches, although purinergic signaling via $P2X_7R$ and luminal ATP have been considered to play an important role in the gastrointestinal tract. Here, we present the first report on the expression of $P2X_7R$ on M cells and characterize the role of $P2X_7R$ in immune enhancement by ATP or LL-37.

p53 Nuclear Accumulation as a Possible Biomarker for Biological Radio-dosimetry in Oral Mucosal Epithelial Cells

  • Kim, Youn-Young;Kim, Jong-il;Kim, Jin;Yook, Jong-In;Kim, The-Hwan;Son, Young-Sook
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.123-129
    • /
    • 2001
  • Cellular response to ionizing radiation is affected by cell types, radiation doses, and post-irradiation time. Based on the trypan blue dye exclusion assay in normal oral mucosal cells (OM cells), a 48 h post-irradiation was sufffcient and an adequate time point for the evaluation of radiation sensitivity Its $LD_{50}$ was approximately 1.83 Gy To investigate possible biomarkers useful for the biological radiodosimetry of normal epithelial cells (p53, c-fos, cyclin D1, cdc-2, pRb) EGF receptor phosphorylation and Erk activation were evaluated at different radiation doses and different post-irradiation times. From 0.5 Gy, p53 was accumulated in the nucleus of basal cells of the OM raft culture at 4 h post-irradiation and sustained up to 24 h post-irradiation, which suggests that radiation-induced apoptosis or damage repair was not yet completed. The number of p53 positive cells and biosynthesis of p53 were correlated with radiation doses. Both cyclin D1 and c-fos were only transiently induced within 1 h post-irradiation. Cyclin D1 was induced at all radiation doses. However, cfos induction was highest at 0.1 Gy, approximately 7.3 fold more induction than the control, whose induction was reduced in a reverse correlation with radiation dose. The phosphorylation pattern of cdc-2 and pRb were unaffected by radiation. In contrast to A431 tails overexpressing the EGF receptor approximately 8.5 fold higher than normal epithelial, the OM cells reduced the basal level of the EGF receptor phosphorylation in a radiation dose dependent fashion. In conclusion, among radiation-induced biomolecules, the p53 nuclear accumulation may be considered for the future development of a useful marker far biological radiodosimetry in normal epithelial tissue since it was sustained for a longer period and showed a dose response relationship. Specific c-fos induction at a low dose may also be an important finding in this study It needs to be studied further for the elucidation of its possible connection with the low dose radio-adaptive response.

  • PDF

Berberine Prevents Intestinal Mucosal Barrier Damage During Early Phase of Sepsis in Rat through the Toll-Like Receptors Signaling Pathway

  • Li, Guo-Xun;Wang, Xi-Mo;Jiang, Tao;Gong, Jian-Feng;Niu, Ling-Ying;Li, Ning
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Our previous study has shown berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway. In this study, we explored the regulatory effects of berberine on Toll-like receptors during the intestinal mucosal damaging process in rats. Male Sprague-Dawlay (SD) rats were treated with berberine for 5 d before undergoing cecal ligation and puncture (CLP) to induce polymicrobial sepsis. The expression of Toll-like receptor 2 (TLR 2), TLR 4, TLR 9, the activity of nuclear factor-kappa B ($NF-{\kappa}B$), the levels of selected cytokines and chemokines, percentage of cell death in intestinal epithelial cells, and mucosal permeability were investigated at 0, 2, 6, 12 and 24 h after CLP. Results showed that the tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) level were significantly lower in berberine-treated rats compared to the control animals. Conversely, the expression level of tight junction proteins, percentage of cell death in intestinal epithelial cells and the mucosal permeability were significantly higher in berberine-treated rats. The mRNA expression of TLR 2, TLR 4, and TLR 9 were significantly affected by berberine treatment. Our results indicate that pretreatment with berberine attenuates tissue injury and protects the intestinal mucosal barrier in early phase of sepsis and this may possibly have been mediated through the TLRs pathway.

Involvement of PI3K/AKT and MAPK Pathways for TNF-α Production in SiHa Cervical Mucosal Epithelial Cells Infected with Trichomonas vaginalis

  • Yang, Jung-Bo;Quan, Juan-Hua;Kim, Ye-Eun;Rhee, Yun-Ee;Kang, Byung-Hyun;Choi, In-Wook;Cha, Guang-Ho;Yuk, Jae-Min;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.371-377
    • /
    • 2015
  • Trichomonas vaginalis induces proinflammation in cervicovaginal mucosal epithelium. To investigate the signaling pathways in $TNF-{\alpha}$ production in cervical mucosal epithelium after T. vaginalis infection, the phosphorylation of PI3K/AKT and MAPK pathways were evaluated in T. vaginalis-infected SiHa cells in the presence and absence of specific inhibitors. T. vaginalis increased $TNF-{\alpha}$ production in SiHa cells, in a parasite burden-dependent and incubation time-dependent manner. In T. vaginalis-infected SiHa cells, AKT, ERK1/2, p38 MAPK, and JNK were phosphorylated from 1 hr after infection; however, the phosphorylation patterns were different from each other. After pretreatment with inhibitors of the PI3K/AKT and MAPK pathways, $TNF-{\alpha}$ production was significantly decreased compared to the control; however, $TNF-{\alpha}$ reduction patterns were different depending on the type of PI3K/MAPK inhibitors. $TNF-{\alpha}$ production was reduced in a dose-dependent manner by treatment with wortmannin and PD98059, whereas it was increased by SP600125. These data suggested that PI3K/AKT and MAPK signaling pathways are important in regulation of $TNF-{\alpha}$ production in cervical mucosal epithelial SiHa cells. However, activation patterns of each pathway were different from the types of PI3K/MAPK pathways.

Targeting the Epithelium-Derived Innate Cytokines: From Bench to Bedside

  • Jongho Ham;Jae Woo Shin;Byeong Cheol Ko;Hye Young Kim
    • IMMUNE NETWORK
    • /
    • v.22 no.1
    • /
    • pp.11.1-11.26
    • /
    • 2022
  • When epithelial cells are exposed to potentially threatening external stimuli such as allergens, bacteria, viruses, and helminths, they instantly produce "alarmin" cytokines, namely, IL-33, IL-25, and TSLP. These alarmins alert the immune system about these threats, thereby mobilizing host immune defense mechanisms. Specifically, the alarmins strongly stimulate type-2 immune cells, including eosinophils, mast cells, dendritic cells, type-2 helper T cells, and type-2 innate lymphoid cells. Given that the alarm-raising role of IL-33, IL-25, and TSLP was first detected in allergic and infectious diseases, most studies on alarmins focus on their role in these diseases. However, recent studies suggest that alarmins also have a broad range of effector functions in other pathological conditions, including psoriasis, multiple sclerosis, and cancer. Therefore, this review provides an update on the epithelium-derived cytokines in both allergic and non-allergic diseases. We also review the progress of clinical trials on biological agents that target the alarmins and discuss the therapeutic potential of these agents in non-allergic diseases.

Aqueous Extract of Schizandra chinensis Suppresses Dextran Sulfate Sodiuminduced Generation of IL-8 and ROS in the Colonic Epithelial Cell Line HT-29

  • Lee, Young-Mi;Lee, Kang-Soo;Kim, Dae-Ki
    • Natural Product Sciences
    • /
    • v.15 no.4
    • /
    • pp.185-191
    • /
    • 2009
  • Intestinal epithelial cells (IEC) play an important role in the mucosal immune system. IEC-derived mediators of inflammatory cascades play a principal role in the development of colon inflammation. The aim of this study was to investigate the inhibitory effect of aqueous extracts of Schizandra chinensis fruits (SC-Ex) on the production of inflammatory mediators by the human colonic epithelial cells. HT-29 cells were stimulated with dextran sulfate sodium in the presence or absence of SC-Ex to examine the cytoprotection and production of IL-8 and reactive oxygen species (ROS). It was shown that dextran sulfate sodium (DSS) caused the reduction of cell viability and production of IL-8 and ROS in DSS-treated HT-29 cells. We observed that the treatment of SC-Ex protected significantly cell proliferation from DSS-induced damage in dose-dependent manner. SC-Ex (10 and 100 ${\mu}g$/ml) also suppressed DSS-induced production of IL-8 mRNA and protein. Moreover, DSS-induced ROS production was inhibited markedly by the treatment of 100 ${\mu}g$/ml SC-Ex. These results suggest that SC-Ex has the protective effects on DSS-induced cell damage and the release of inflammatory mediators in the intestinal epithelial cells.

Recent Insights into Cellular Crosstalk in Respiratory and Gastrointestinal Mucosal Immune Systems

  • Sae-Hae Kim;Yong-Suk Jang
    • IMMUNE NETWORK
    • /
    • v.20 no.6
    • /
    • pp.44.1-44.19
    • /
    • 2020
  • The human body is continuously threatened by pathogens, and the immune system must maintain a balance between fighting infection and becoming over-activated. Mucosal surfaces cover several anatomically diverse organs throughout the body, such as the respiratory and gastrointestinal tracts, and are directly exposed to the external environment. Various pathogens invade the body through mucosal surfaces, making the mucosa the frontline of immune defense. The immune systems of various mucosal tissues display distinctive features that reflect the tissues' anatomical and functional characteristics. This review discusses the cellular components that constitute the respiratory and gastrointestinal tracts; in particular, it highlights the complex interactions between epithelial and immune cells to induce Ag-specific immune responses in the lung and gut. This information on mucosal immunity may facilitate understanding of the defense mechanisms against infectious agents that invade mucosal surfaces, such as severe acute respiratory syndrome coronavirus 2, and provide insight into effective vaccine development.