• Title/Summary/Keyword: Mucell

Search Result 2, Processing Time 0.017 seconds

A Study of Surface Improvement for Automotive Part by Injection Mold of Electronic Heating (전류가열 사출금형에 의한 자동차 부품의 표면개선에 관한 연구)

  • Choi, Dong-Hyuk;Hwang, Hyun-Tae;Son, Dong-Il;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • The light-weight of the research and development materials is actively carried out by overseas automobile companies and technology development continues in Korea. For the sake of fuel efficiency, the development of lightweight technology by improving the manufacturing method has been very effective. Recently, to maximize the effects of light weight, automotive interior parts have been applied by the micro-cellular injection molding using supercritical fluids and we call the Mucell manufacturing. This technique causes a problem in the quality of the surface of the products, because the shooting cells are revealed as the surface layer of the products by forming micro cells at the center of the products during injection molding. To overcome these phenomenon, we increased the temperature of injection molding using joule heating until critical value. In this study, we have predicted the problem of Mucell injection molding through the finite element analysis as changed the temperature by joule heating. From the result of finite element analysis, we have determined the optimized process and made the injection mold included electric current heating system with Mucell manufacturing analyzed the surface characteristics of the injection product according to changing mold temperature.

Analysis of the effect of changes in the gate design on cell size and density in Mucell injection molding (초미세 발포성형에서 게이트의 형상 변화에 따른 셀의 크기 및 밀도에 대한 영향도 분석)

  • Jae Hyuk Choi
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.64-69
    • /
    • 2023
  • This paper explores the impact of gate shape changes on the size and density of foamed cells in microcellular foam injection molding. Five different gate shapes were examined while varying the amount of nitrogen gas(N2) injected for foaming. Analysis of the results showed that while average values did not change significantly, deviation values decreased by approximately 65% for cell size and 56% for density when 3.5wt% of nitrogen gas was injected in the film gate. Further analysis was conducted to verify this phenomenon, revealing that the contact area between the gate and product had the greatest impact. Our findings indicate that to ensure uniform generation of foamed cells in microcellular foaming product design, a gate with a wide contact area should be secured.

  • PDF