• Title/Summary/Keyword: Muc4

Search Result 65, Processing Time 0.023 seconds

Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway

  • Jung, Tae-Hwan;Park, Jeong Hyeon;Jeon, Woo-Min;Han, Kyoung-Sik
    • Nutrition Research and Practice
    • /
    • v.9 no.4
    • /
    • pp.343-349
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Fermentation of dietary fiber results in production of various short chain fatty acids in the colon. In particular, butyrate is reported to regulate the physical and functional integrity of the normal colonic mucosa by altering mucin gene expression or the number of goblet cells. The objective of this study was to investigate whether butyrate modulates mucin secretion in LS174T human colorectal cells, thereby influencing the adhesion of probiotics such as Lactobacillus and Bifidobacterium strains and subsequently inhibiting pathogenic bacteria such as E. coli. In addition, possible signaling pathways involved in mucin gene regulation induced by butyrate treatment were also investigated. MATERIALS/METHODS: Mucin protein content assay and periodic acid-Schiff (PAS) staining were performed in LS174T cells treated with butyrate at various concentrations. Effects of butyrate on the ability of probiotics to adhere to LS174T cells and their competition with E. coli strains were examined. Real time polymerase chain reaction for mucin gene expression and Taqman array 96-well fast plate-based pathway analysis were performed on butyrate-treated LS174T cells. RESULTS: Treatment with butyrate resulted in a dose-dependent increase in mucin protein contents in LS174T cells with peak effects at 6 or 9 mM, which was further confirmed by PAS staining. Increase in mucin protein contents resulted in elevated adherence of probiotics, which subsequently reduced the adherent ability of E. coli. Treatment with butyrate also increased transcriptional levels of MUC3, MUC4, and MUC12, which was accompanied by higher gene expressions of signaling kinases and transcription factors involved in mitogen-activated protein kinase (MAPK) signaling pathways. CONCLUSIONS: Based on our results, butyrate is an effective regulator of modulation of mucin protein production at the transcriptional and translational levels, resulting in changes in the adherence of gut microflora. Butyrate potentially stimulates the MAPK signaling pathway in intestinal cells, which is positively correlated with gut defense.

Effect of Jaeumganghwa-tang on Production and Secretion of Respiratory Mucus (자음강화탕(滋陰降火湯)이 호흡기 점액의 생성 및 분비에 미치는 영향)

  • Cheon, Jin Hong;Min, Sang Yoen;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.31-46
    • /
    • 2016
  • Objectives In this study, the effects of Ja-eum-gang-hwa-tang (JGT) on the increase in airway epithelial mucosubstances of rats and ATP- or PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells were investigated. Materials and Methods Hypersecretion of airway mucus was produced by exposure of $SO_2$ to rats for 3 weeks. The effect of orally-administered JGT for 2 weeks on increased epithelial mucosubstances from tracheal goblet cells of rats was assessed by using histopathological analysis after staining the epithelial tissue with Hematoxylin-eosin and PAS-alcian blue. Possible cytotoxicity of JGT was assessed by investigating the potential damage on kidneys and liver functions by measuring serum GOT/GPT activities and serum BUN concentration of rats and the body weight gain during experiment. Also, the effect of JGT on ATP- or PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of JGT and treated with ATP ($200{\mu}M$) or PMA ($10ng/ml$) or EGF ($25ng/ml$) or TNF-${\alpha}$ (0.2 nM) for 24 hrs to assess the effect of JGT both on ATP- or PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production by using enzyme-linked immunosorbent assay (ELISA) and on gene expression by the same inducers using reverse transcription-polymerase chain reaction (RT-PCR). Results (1) JGT decreased the amount of intraepithelial mucosubstances of trachea of rats. (2) JGT did not show any renal and hepatic toxicities, and did not affect body weights either. (3) JGT significantly inhibited ATP-, PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions from NCI-H292 cells. (4) JGT inhibited EGF-, and PMA-induced expression levels of MUC5AC gene in NCI-H292 cells. However, ATP- and TNF-${\alpha}$-induced MUC5AC gene expression levels were not affected in NCI-H292 cells. Conclusions The result from the present study suggests that JGT might control the production and gene expression of airway mucin observed in various respiratory diseases which accompanied by mucus hypersecretion. Also, JGT did not show liver toxicity or impact on kidney functions. The effect of JGT should be further studied by using animal experimental models which can show proper pathophysiology of airway diseases.

Effect of Gamiyukgunja-tang on Secretion and Gene Expression of Airway Mucin (가미육군자탕(加味六君子湯)이 호흡기 뮤신분비 및 뮤신 유전자 발현에 미치는 영향)

  • Park, Yang-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.98-103
    • /
    • 2007
  • In the present study, the author intended to investigate whether Gamiyukgunja-tang (Jiaweiliujunzi-tang, GYGT) significantly affect both mucin release from and MUC5AC gene expression in cultured hamster tracheal surface epithelial (HTSE) cells. Confluent HTSE cells were metabolically radiolabeled with 3H-glucosamine for 24 hrs and chased for 30 min in the presence of GYGT to assess the effect on 3H-mucin release. Possible cytotoxicity of the agent was assessed by measuring lactate dehydrogenase (LDH) release. Total elution profiles of control spent media and treatment sample through Sepharose CL-4B column were analysed and effect of GYGT on MUC5AC gene expression in cultured HTSE cells were investigated. GYGT did not affect mucin release from cultured HTSE cells. GYGT did not show significant cytotoxicity. GYGT also did not affect the secretion of the other releasable glycoproteins with less molecular weight than mucin. GYGT increased the expression level of MUC5AC gene. We suggest that the effect of GYGT with their components should be further investigated through ongoing research.

Preparation of Active Fraction from Radish Water Extracts for Improving the Intestinal Functions and Constipation Activities (무(Raphanuse sativa var. nigra L.) 물 추출물로 부터 장기능 및 변비질환 개선을 위한 활성 분획의 제조)

  • Baik, Soon-Ok;Lee, Yoo-Hui;Kim, Young-Sook;Ryu, Myeong-Hyeon;Kim, Hyun-Kyung
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.315-320
    • /
    • 2004
  • The aim of this study was to develop an activator, 3-10 kDa fraction from radish water extracts, that will improve the intestinal function and bowel movement in the colons. Radish water extracts were investigated for their intestinal function effects according to the charcoal meal transit method, employing Balb/c mice: also, their anti-constipation activities were compared utilizing the loperamide-induced constipation method, employing SD rats. The result suggested that the effects of the charcoal meal transit increased remarkably in radish water extract administrated rats in comparison to loperamide administrated rats. Futhermore, the effects of various solvent extracts of radish on charcoal meal transit in Balb/c mice increased remarkably in radish water fraction administrated rats than in different solvent fraction administrated rats. Radish extraction was tested and isolated into 4 groups: below 3 kDa, 3-10 kDa, 10-300 kDa, and over 300 kDa. 3-10 kDa was the most effective on the intestinal function and bowel movement in the colons; also, 3-10 kDa fraction of radish water extraction was found to be the most effective charcoal meal transit. The dry weight and moisture content of feces remarkedly increased in the 3-10 kDa administrated rats group than in the loperamide only group. Experimental results revealed that 3-10 kDa fraction of radish water extract was the most effective on the intestinal function and bowel movement was the crypt epithelial cells that contained more MUC2 in the 3-10 kDa administrated group than the loperamide only group: in addition, the thickness of mucus layer stained with alcian blue was significantly thicker in 3-10 kDa administrated rats than in loperamide administrated rats. Crypt epithelial cells secreted more MUC2 in the 3-10 kDa administrated group than the loperamide only group and the stained cells clearly showed the MUC2 with antibody Biogenex AM358.

Effects of Bojung-ikgitang-gamibang and Seonbang-paedoktang on Secretion of Airway Mucus and Expression of Mucin Gene (보중익기탕 가미방(補中益氣湯 加味方)과 선방패독탕(仙方敗毒湯)이 기도 점액의 분비와 뮤신 유전자발현에 미치는 영향)

  • Jung, Chang-Ho;Han, Jae-Kyung;Kim, Yun-Hee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.33-55
    • /
    • 2007
  • Objectives In the present study, the author intended to investigate whether bojung-ikgitang-gamibang(BJGB) and seonbang-paedoktang(SBPT) significantly affect in vivo and in vitro mucin secretion from airway epithelial cells. Methods In vivo experiment, mice's mucin which is on a hypersecretion of airway mucin, mice's tracheal goblet cells in hyperplasia and mice's intraepithelial mucosubstances were exposed with SO2for3weeks. Effects of orally-administered BJGB and SBPT during 1 week on vivo mucin secretion and hyperplasia of tracheal goblet cells were assessed by using both enzyme-linked immunosorbent assay(ELISA) and staining goblet cells with alcian blue. In vitro experiment, confluent hamster tracheal surface epithelial(HTSE) cells were metabolically radiolabeled with 3H-glucosamine for 24hrs and chased for 30 min in the presence of each agent to figure out the effectiveness of 3H-mucin secretion. Total elution profiles of control spent media and treatment sample through Sepharose CL-4B column were analyzed. The effects of each agent on contractility of isolated tracheal smooth muscle and effects of each agent on MUC5AC gene expression in cultured HTSE cells were investigated. Also, possible cytotoxicities of each agent were assessed by measuring lactate dehydrogenase(LDH) release. Additionally, effects of BJGB and SBPT on both MUC5AC gene expression in cultured HTSE cells and TNF- or EGF-induced MUC5AC gene expression in human airway epithelial cells (NCI-H292) were investigated. Results (1) BJGB and SBPT inhibited hypersecretion of in vivo mucin. SBPT also inhibited the increase the number of goblet cells. However, BJGB did not affect the increase of number of goblet cells; (2) BJGB significantly increased mucin secretion from cultured HTSE cells, without significant cytotoxicity, and chiefly affected the 'mucin' secretion; (3) SBPT did not affect mucin secretion from cultured HTSE cells without significant cytotoxicity, and also did not affect the secretion of the other releseable glycoproteins; (4) BJGB and SBPT did not affect Ach-induced contraction of isolated tracheal smooth muscle; (5) SBPT significantly inhibit the expression levels of MUC5AC gene and BJGB significantly increased the expression levels of MUC5AC gene in both HTSE cells and NCI-H292 cells. Conclusions BJGB and SBPT can not only affect the secretion of mucin but also affect the expression of mucin gene. The author suggests that the effects BJGB and SBPT with their components should be further investigated and it is highly desirable to find from oriental medical prescriptions, novel agents which might regulate hypersecretion of mucin from airway epithelial cells.

  • PDF

Effects of 17β-Estradiol on Colonic Permeability and Inflammation in an Azoxymethane/Dextran Sulfate Sodium-Induced Colitis Mouse Model

  • Song, Chin-Hee;Kim, Nayoung;Sohn, Sung Hwa;Lee, Sun Min;Nam, Ryoung Hee;Na, Hee Young;Lee, Dong Ho;Surh, Young-Joon
    • Gut and Liver
    • /
    • v.12 no.6
    • /
    • pp.682-693
    • /
    • 2018
  • Background/Aims: Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases (IBDs) such as ulcerative colitis. This dysfunction is caused by increased permeability and the loss of tight junctions in intestinal epithelial cells. The aim of this study was to investigate whether estradiol treatment reduces colonic permeability, tight junction disruption, and inflammation in an azoxymethane (AOM)/dextran sodium sulfate (DSS) colon cancer mouse model. Methods: The effects of $17{\beta}$-estradiol (E2) were evaluated in ICR male mice 4 weeks after AOM/DSS treatment. Histological damage was scored by hematoxylin and eosin staining and the levels of the colonic mucosal cytokine myeloperoxidase (MPO) were assessed by enzyme-linked immunosorbent assay (ELISA). To evaluate the effects of E2 on intestinal permeability, tight junctions, and inflammation, we performed quantitative real-time polymerase chain reaction and Western blot analysis. Furthermore, the expression levels of mucin 2 (MUC2) and mucin 4 (MUC4) were measured as target genes for intestinal permeability, whereas zonula occludens 1 (ZO-1), occludin (OCLN), and claudin 4 (CLDN4) served as target genes for the tight junctions. Results: The colitis-mediated induced damage score and MPO activity were reduced by E2 treatment (p<0.05). In addition, the mRNA expression levels of intestinal barrier-related molecules (i.e., MUC2, ZO-1, OCLN, and CLDN4) were decreased by AOM/DSS-treatment; furthermore, this inhibition was rescued by E2 supplementation. The mRNA and protein expression of inflammation-related genes (i.e., KLF4, NF-${\kappa}B$, iNOS, and COX-2) was increased by AOM/DSS-treatment and ameliorated by E2. Conclusions: E2 acts through the estrogen receptor ${\beta}$ signaling pathway to elicit anti-inflammatory effects on intestinal barrier by inducing the expression of MUC2 and tight junction molecules and inhibiting pro-inflammatory cytokines.

Effect of Wood Vinegar Produced from Morus alba on Hypersecretion of Airway Mucus (상지(桑枝) 목초액이 호흡기 객담 과다분비에 미치는 영향)

  • Kim, Ho;Jung, Hye-Mi;Kim, Sol-Li;Seo, Un-Kyo
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.650-666
    • /
    • 2010
  • Objectives : In this study, the author tried to investigate whether wood vinegar produced from Morus alba (MA) significantly affects the increase in airway epithelial mucosubstances and hyperplasia of tracheal goblet cells of rats, and in vitro airway mucin secretion and PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production / gene expression from human airway epithelial cells. Materials and Methods : For the in vivo experiment, the author induced hypersecretion of airway mucus and goblet cell hyperplasia by exposure of rats to SO2 over 3 weeks. Effect of orally-administered MA over 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats and hyperplasia of goblet cells were assessed using histopathological analysis after staining the epithelial tissue with alcian blue. For the in vitro experiment, confluent RTSE cells were chased for 30 min in the presence of MA to assess the effect of MA on mucin secretion by enzyme-linked immunosorbent assay (ELISA). Also, effects of MA on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of MA and treated with PMA (10 ng/ml), EGF (25 ng/ml) or TNF-alpha (0.2 nm) for 24 hrs, to assess both effects of MA on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production by enzyme-linked immunosorbent assay (ELISA) and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). Possible cytotoxicities of MA in vitro were assessed by examining LDH release from RTSE cells and the rate of survival and proliferation of NCI-H292 cells. In vivo liver and kidney toxicities of MA were evaluated by measuring serum GOT/GPT activities and serum BUN/creatinine concentrations of rats after administering MA orally. Results : 1. MA decreased the amount of intraepithelial mucosubstances of rats exposed to sulfur dioxide inhalationally. 2. MA decreased in vitro mucin secretion from cultured RTSE cells. 3. MA significantly inhibited PMA-, EGF-, and TNF-alpha-induced MUC5AC mucin productions and the expression levels of MUC5AC mRNA from NCI-H292 cells. 4. MA did not show either in vitro or in vivo hepatic or renal toxicities. Conclusion : The results from this study suggests that MA can regulate the secretion, production and gene expression of airway mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion and does not show in vivo toxicity to liver and kidney functions after oral administration. Effects of MA should be further studied using animal experimental models that simulate the diverse pathophysiology of respiratory diseases via future research.

Effect of Haepyoijin-tang on Airway Mucin Secretion, Production, Gene Expression and Hypersecretion of Mucus (해표이진탕이 기도 뮤신의 분비, 생성 및 유전자 발현에 미치는 영향)

  • Suk, Yun Hee;Min, Sang Yeon;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.65-79
    • /
    • 2015
  • Objectives : In this study, effects of haepyoijintang (HIJ) on the increase in airway epithelial mucosubstances of rats and ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells were investigated. Methods : Hypersecretion of airway mucus was induced by exposure of rats to $SO_2$ during 3 weeks. Effect of orally-administered HIJ during 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats was evaluated using histopathological analysis after staining the epithelial tissue with PAS-alcian blue. Possible cytotoxicity of HIJ was evaluated by examining the potential damage of kidney and liver functions by measuring serum GOT/GPT activities and serum BUN and creatinine concentrations of rats and the body weight gain during experiment, after administering HIJ orally. At the same time, the effect of HIJ on ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of HIJ and treated with ATP ($200{\mu}M$), PMA (10 ng/ml), EGF (25 ng/ml) or TNF-${\alpha}$ (0.2 nM) for 24 hrs, to evaluate the effect of HIJ both on ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production using enzyme-linked immunosorbent assay (ELISA) and on gene expression by the same inducers using reverse transcription-polymerase chain reaction (RT-PCR). Results : (1) HIJ decreased the amount of intraepithelial mucosubstances of trachea of rats. (2) HIJ did not show renal and hepatic toxicities and did not affect body weight gain of rats during experiment. (3) HIJ significantly inhibited ATP-, PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions from NCI-H292 cells. (4) HIJ significantly inhibited ATP-, PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin gene expression from NCI-H292 cells. Conclusions : The result from the present study suggests that HIJ might control the production and gene expression of airway mucin observed in various respiratory diseases accompanied by mucus hypersecretion and do not show in vivo toxicity to liver and kidney functions after oral administration. Effect of HIJ with their diverse components should be further investigated using animal experimental models that can reflect the pathophysiology of airway diseases through future studies.

Effect of Piryongbanggamgil-tang on Airway Mucin Secretion, Production, Gene Expression and Hypersecretion of Mucus (필용방감길탕이 기도 뮤신의 분비, 생성, 유전자 발현 및 점액 과다 분비에 미치는 영향)

  • Kim, Yoon Young;Min, Sang Yeon;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.56-71
    • /
    • 2014
  • Objectives In this study, the author tried to investigate whether piryongbang-gamgil-tang (PGGT) significantly affect in vitro airway mucin secretion, PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production / gene expression from human airway epithelial cells and increase in airway epithelial mucosubstances and hyperplasia of tracheal goblet cells of rats. Materials and Methods For in vitro experiment, confluent RTSE cells were chased for 30 min in the presence of PGGT to assess the effect of PGGT on mucin secretion by enzyme-linked immunosorbent assay (ELISA). Also, effect of PGGT on PMA- or EGFor TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of PGGT and treated with PMA (10 ng/ml) or EGF (25 ng/ml) or TNF-${\alpha}$ (0.2 nM) for 24 hrs, to assess both effect of PGGT on PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production by ELISA and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). For in vivo experiment, the author induced hypersecretion of airway mucus and goblet cell hyperplasia by exposure of rats to $SO_2$ during 3 weeks. Effect of orally-administered PGGT during 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats and hyperplasia of goblet cells were assesed by using histopathological analysis after staining the epithelial tissue with alcian blue. Possible cytotoxicities of PGGT in vitro were assessed by examining LDH release from RTSE cells and the rate of survival and proliferation of NCI-H292 cells. In vivo liver and kidney toxicities of PGGT were evaluated by measuring serum GOT/GPT activities and serum BUN/creatinine concentrations of rats after administering PGGT orally. Results (1) PGGT did not affect in vitro mucin secretion from cultured RTSE cells. (2) PGGT significantly inhibited PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions and the expression levels of MUC5AC mRNA from NCI-H292 cells. (3) PGGT decreased the amount of intraepithelial mucosubstances and showed the tendency of expectorating airway mucus already produced. (4) PGGT increased LDH release from RTSE cells. However, PGGT did not show in vivo liver and kidney toxicities and cytotoxicity to NCI-H292 cells. Conclusion The result from this study suggests that PGGT can regulate the production and gene expression of airway mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion and do not show in vivo toxicity to liver and kidney functions after oral administration. Effect of PGGT with their components should be further studied using animal experimental models that reflect the diverse pathophysiology of respiratory diseases through future investigations.

A Compact Microstrip Patch Antenna Based on Metamaterials for Wi-Fi and WiMAX Applications

  • Nelaturi, Suman;Sarma, Nookala Venkata Satya Narasimha
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.182-187
    • /
    • 2018
  • A low profile asymmetrical fractal boundary patch antenna based on reactive impedance surface (RIS) and a mushroom unit cell (MUC) is proposed and studied for dual band operation. The sides of the square patch antenna are replaced with asymmetrical half circled fractal curves for circular polarization operation at patch mode band. The fractal patch antenna is loaded with MUC for dual band operation. The antenna radiation characteristics are investigated and illustrated with both simulated and experimental results in detail. The 10-dB return loss bandwidth are 8.48% (3.21-3.49 GHz) and 2.59% (2.30-2.36 GHz) at upper and lower resonance frequencies, respectively. The 3-dB axial ratio bandwidth is 4.26% (3.21-3.35 GHz). A close agreement between simulation data with experimental results is observed.