• Title/Summary/Keyword: Mt. Jeongjok

Search Result 5, Processing Time 0.019 seconds

Formation Process of the Second Mujechi Moor (무제치 제2늪의 형성과정)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.1
    • /
    • pp.206-214
    • /
    • 2004
  • The purpose of this paper is to elucidate the formation process of the Second Mujechi Moor at Mt. Jeongjok. For doing so, 1 analysed the formation process of valley which moor is located in, and the formation process of block field damming the valley: First, it is not a valley but a hollow which the Second Mujechi Moor located in. Hollow was formed as weathering bedrock weathered deeply along joints under warm and wet climatic conditions was denudated by rain wash. Second, the Second Mujechi Moor had been a marginal lake. Block stream developed during the last glacial period of Pleistocene, and it dammed the mouth of hollow. Afterwards sediments transported from slope filled the marginal lake, thus the lake changed to the moor where aquatic plants could grown. Third, the Second Mujechi Moor is drained and dried out by removal of matrix material from the block stream dam of the mouth of moor. For keeping moor's present conditions, we must control moor's drainage by filling open space in block stream with fine material.

  • PDF

The Climatic Change during the Historical Age inferred from Vegetation Environment in Alpine Moorsin the Korean Peninsula (한반도 고산습지의 식생환경과 역사시대 기후변화)

  • Yoon, Soon-Ock;Kim, Minji;Hwang, Sangill
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.69-83
    • /
    • 2014
  • This study examines vegetation and climate changes from pollen compositions of alpine moors in the Korean Peninsula such as Mujechineup at Mt. Jeongjok, Yongneup at Mt. Daeam, Jilmoineup at Mt. Odae and Wangdeungjaeneup at Mt. Jiri including moors at Mt. Jeombong. It can be found that the alpine moors were less interfered by human than low moors during the past 2,000 years of the historical age. Based on dominant periods of Pinus and Quercus, pollen compositions of the alpine wetlands, climatic environments of vegetation and historical records, vegetation and climate changes during three periods such as approximately 2,000~1,000 yr BP, 1,000~400 yr BP and 400 yr BP~present are examined. It was warmer during the period of 1,000~400 yr BP than 2,000~1,000 yr BP. The period of approximately 400 yr BP indicate the coldest climate of Little Ice Age. This study finds dominances of Quercus, low NAP/AP ratios, obvious divisions of pollen zones and human interference after 400 yr BP from pollen compositions of the alpine moors during the historical age. Human interference in the high moors becomes obvious after approximately 400 yr BP, indicating that there is a time lack of approximately 1,500~2,000 years between the alpine and low moors.

Spatial-temporal distribution of carabid beetles in wetlands

  • Do, Yu-No;Jo, Hyun-Bin;Kang, Ji-Hoon;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • v.35 no.1
    • /
    • pp.51-58
    • /
    • 2012
  • In this study, we investigated carabid beetles residing in the wetlands to understand their ecological adaptation and strategy selection associated with restricted resources and habitat limitation. The species richness, abundance, seasonal activity, and spatial distribution of the carabid beetles between the Mujechi Wetlands (wetland sites) and Mt. Jeongjok (mountain sites) have been compared. A total of 1,733 individual beetles from 30 species were collected and classified at the studied sites. The wetland sites were identified as having lower species richness and abundance for carabid beetles when compared with the adjacent mountain sites, whereas these beetles were observed to be dominant in the wetland sites than in the adjacent mountain sites. Calosoma inquisitor cyanescens, Carabus sternbergi sternbergi, and Carabus jankowskii jankowskii species were dominant in both the wetland and mountain sites. These species showed significantly different seasonal activity patterns in the wetland sites relative to the mountain sites. Although the three listed carabid species were observed to be widely distributed throughout the wetland sites, they still showed preference for drier sites, which clearly shows a distinction in their habitats. The results of the spatial-temporal distribution of carabid beetles in the wetland sites reflect their special strategies regarding space and time partitioning for maintaining their population. The distribution patterns of carabid beetles in the wetland sites also showed the desiccation gradient and environmental changes prevalent in wetlands. Ecological surveys, which use carabid beetles in the wetlands, can then be performed when restoring wetlands and for establishing management practices for improving the habitat quality.

Diversity of Moojechineup's flora (무제치늪 식물상의 다양성)

  • Park, Seongjun;An, Bo-Ram;Jang, Soon-Young;Park, SeonJoo
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.4
    • /
    • pp.370-382
    • /
    • 2011
  • We investigated the area around four moors from May 2009 to June 2010 for plant diversity in Moojechineup, officially designated as the Ramsar wetland. The vascular plants of Moojechineup at Mt. Jeongjok were recorded as total 149 taxa, 55 families, 105 genera, 128 species, 1 subspecies, 16 varieties, and 4 forms. Rare plants were observed 7 taxa (Eriophorum gracile Koch, Drosera rotundifolia L., Iris ensata var. spontanea (Makino) Nakai, Kobresia bellardii (All.) Degl, Utricularia bifida L., Utricularia racemosa Wall., Utricularia yakusimensis Masam.). Korean endemic plants were 1 taxon, floristics special plants were 19 taxa, and naturalized plants were 3 taxa. Phytogeographical and evolutionarily, Eriophorum gracile is an important species; hence, further studies are needed to conserve it. Moojechineup is similar to the Shinbulsan wetland in terms of wetland plants (hydrophytes). Moojechineup's flora changes are in process slowly compared to earlier work; thus, continuing interest and appropriate measures should be encouraged.

The Patterns of Inorganic Cations, Nitrogen and Phosphorus of Plants in Moojechi Moor on Mt. Jeongjok. (정족산 무제치늪 식물의 무기이온, 질소 및 인의 양상)

  • 배정진;추연식;송승달
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.109-114
    • /
    • 2003
  • To investigate ecophysiological characteristics of plants species adapted to moor habitat, we selected 22 species plants and analyzed inorganic cations (K, Ca, Mg), heavy metals (Al, Fe, Mn) and total nitrogen and phosphorus quantitatively. Moojechi moor indicated typical acidic and oligotrophic conditions with pH of 5.0∼5.6 (pH 4.3∼5.1 in soil) and EC of 15∼30μ S/cm, and contained very low contents of soil divalent cation such as Ca and Mg but high contents of heavy metals (esp. Al). With respect to inorganic cation contents, investigated plants species showed remarkable interspecific difference. Plant species belonging to J. effusus var. decipiens, M. japonica, I. globosa, M. sacchariflorus, R. mucronulatum, R. yedoense var. poukhanense, H. micrantha, D. rotundifolia showed very low contents of inorganic cation below 400 μ M/g DW, but plant species of C. palustris var. spontanea, L. sessilifolia, P. mandarinorum, C. lineare, S. austriaca sub. glabra, V. mandshurica, A. decursiva showed high cation contents in leaves. Especially, S. austriaca sub. glabra (Compositae) and V. mandshurica (Violaceae) showed pattern accumulating Ca and Mg with plant growth, but I. ensata var. spontanea (Iridaceae) and S. officinalis (Rosaceae) showed decreasing tendency. Meanwhile, most plant species showed low contents of soluble metal ions in leaves in spite of high heavy metal contents on soil, and indicated remarkable interspecific differences in the total contents and composition of heavy metals accumulated. Despite low contents of N and P on soil, most plant species indicated relatively high contents of N and P in leaves at the early stage of growth, and showed slowly decreasing pattern according to growth. Consequently, it seems that plant species inhabited on Moojechi moor cope with acidic-oligotrophic conditions, accumulating inorganic cations and nitrogen at the early growing stage and reutilizing them in the course of growth, and developing heavy metal excluding mechanism.