• 제목/요약/키워드: Mt. JUMBONG

검색결과 41건 처리시간 0.307초

The Response of Nitrogen Deposition to Methane Oxidation Availability and Microbial Enzyme Activities in Forest Soils

  • Jang, In-Young;Lee, Hyoung-Min;Kang, Ho-Jeong
    • Environmental Engineering Research
    • /
    • 제15권3호
    • /
    • pp.157-161
    • /
    • 2010
  • Forest soils are often nitrogen-limited, and nitrogen input to forest soils can cause substantial changes in the structure and functions of a soil ecosystem. To determine the effects of nitrogen input on methane oxidation and the microbial enzyme activities, manipulation experiments were conducted using nitrogen addition to soil samples from Mt. Jumbong. Our findings suggested that the addition of nitrogen to the soil system of Mt. Jumbong did not affect the microbial enzyme activities. Conversely, the addition of nitrogen affected the rate of methane oxidation. Inorganic nitrogen in soils can inhibit methane oxidation via several mechanisms, such as substrate competition, toxic effects, and competition with other microbes, but the inhibitory effects are not always the same. In this research, seasonal changes were found to produce different inhibitory factors, and these different responses may be caused from differences in the methantrophic bacteria community structure.

Controlling environmental factors of soil enzyme activities at three altitudes on Mt. Jumbong

  • Jang, In-Young;Kang, Ho-Jeong
    • Journal of Ecology and Environment
    • /
    • 제33권3호
    • /
    • pp.223-228
    • /
    • 2010
  • Soil microbes perform crucial roles in the nutrient cycles of forest ecosystems, by effecting the decomposition of organic matter. Enzyme activities have been used to evaluate decomposition rates, as well as microbial activities. The principal objectives of this study were to determine the activities of different soil enzymes, to compare enzyme activities at different elevations, and to elucidate the most important controlling variables for enzyme activities. We conducted a field survey at three sites in Mt. Jumbong on a monthly basis from May, 2004 to September, 2005. Enzyme activities did not change substantially over different seasons. However, the spatial differences were distinct; the lowest elevation site evidenced the lowest levels of enzyme activity. Soils at the lowest elevation were nutrient-depleted soils, and enzyme activities appeared to be affected by precipitation and temperature. However, enzyme activities in fertile soils at high elevations were associated with nutrients and organic matter. The enzyme activities detected in this study differed significantly at the three elevations, and their controlling variables also evidenced different factors.

The Life Cycle and Secondary Production of Nemoura gemma Ham and Lee (1998) in a High Mountain Stream in Korea

  • Chung, Keun
    • Korean Journal of Ecology and Environment
    • /
    • 제43권1호
    • /
    • pp.19-23
    • /
    • 2010
  • Life cycle and secondary production of Nymphs of Nemoura gemma Ham and Lee were estimated by using specimens collected from a stream in Mt. Jumbong in the central Korean peninsula. N. gemma in the study stream was univoltine. Youngest nymphs were collected in April. They appeared to grow continuously until the emergence in early spring next year. The cohort production interval for the species was estimated as 399 days. The annual secondary production (ash free dry weight) estimated by removal-summation and the size-frequency methods were 582 and $786\;mg\;m^{-2}\;yr^{-1}$, respectively. Gut content analysis showed that N. gemma was a shredder.

Dietary composition of two coexisting bat species, Myotis ikonnikovi and Plecotus ognevi, in the Mt. Jumbong forests, South Korea

  • Sungbae Joo;Injung An;Sun-Sook Kim
    • Journal of Ecology and Environment
    • /
    • 제47권4호
    • /
    • pp.168-176
    • /
    • 2023
  • Background: Many insectivorous bats have flexible diets, and the difference in prey item consumption among species is one of the key mechanisms that allows for the avoidance of interspecies competition and promotes coexistence within a microhabitat. In Korea, of the 24 bat species that are known to be distributed, eight insectivorous bats use forest areas as both roosting and foraging sites. Here, we aimed to understand the resource partitioning and coexistence strategies between two bat species, Myotis ikonnikovi and Plecotus ognevi, cohabiting the Mt. Jumbong forests, by comparing the differences in dietary consumption based on habitat utilization. Results: Upon examining their dietary composition using the DNA meta-barcoding approach, we identified 403 prey items (amplicon sequence variants). A greater prey diversity including Lepidoptera, Diptera, Coleoptera, and Ephemeroptera, was detected from M. ikonnikovi, whereas most prey items identified from P. ognevi belonged to Lepidoptera. The diversity index of prey items was higher for M. ikonnikovi (H': 5.67, D: 0.995) than that for P. ognevi (H': 4.31, D: 0.985). Pianka's index value was 0.207, indicating little overlap in the dietary composition of these bat species. Our results suggest that M. ikonnikovi has a wider diet composition than P. ognevi. Conclusions: Based on the dietary analysis results, our results suggests the possibility of differences in foraging site preferences or microhabitat utilization between two bat species cohabiting the Mt. Jumbong. In addition, these differences may represent one of the important mechanism in reducing interspecific competition and enabling coexistence between the two bat species. We expected that our results will be valuable for understanding resource partitioning and the coexistence of bats inhabiting the Korean forests.