• Title/Summary/Keyword: Moving target

Search Result 834, Processing Time 0.028 seconds

An Improved ViBe Algorithm of Moving Target Extraction for Night Infrared Surveillance Video

  • Feng, Zhiqiang;Wang, Xiaogang;Yang, Zhongfan;Guo, Shaojie;Xiong, Xingzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4292-4307
    • /
    • 2021
  • For the research field of night infrared surveillance video, the target imaging in the video is easily affected by the light due to the characteristics of the active infrared camera and the classical ViBe algorithm has some problems for moving target extraction because of background misjudgment, noise interference, ghost shadow and so on. Therefore, an improved ViBe algorithm (I-ViBe) for moving target extraction in night infrared surveillance video is proposed in this paper. Firstly, the video frames are sampled and judged by the degree of light influence, and the video frame is divided into three situations: no light change, small light change, and severe light change. Secondly, the ViBe algorithm is extracted the moving target when there is no light change. The segmentation factor of the ViBe algorithm is adaptively changed to reduce the impact of the light on the ViBe algorithm when the light change is small. The moving target is extracted using the region growing algorithm improved by the image entropy in the differential image of the current frame and the background model when the illumination changes drastically. Based on the results of the simulation, the I-ViBe algorithm proposed has better robustness to the influence of illumination. When extracting moving targets at night the I-ViBe algorithm can make target extraction more accurate and provide more effective data for further night behavior recognition and target tracking.

Moving Target Position Detecting System using Dual Line CCD and Photometric Interpolation

  • Ryu, Kwang-Ryol;Kim, Young-Bin
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.366-371
    • /
    • 2009
  • A realization for an accurate position detecting system of a moving target in two dimensional plane using dual line CCDs and photometric interpolation is presented. The system is realized that the infrared LEDs are utilized for lighting source, a target size is recognized by the scanned data from CCD owing to blocking the radiated light path by placing the target between CCD and lighting source, a coordinate on the plane is found by plane trigonometry formed by the moving target and two CCD sensors, and the former scan data is used for the coordinate iteratively and the photometric interpolation is applied to sub-pixel of scanned image. The experimental results show that the experiment results in a success rate about 3 different size targets, 3, 5 and 7mmm on the test plane $210{\times}373mm$. The moving target positioning detected success rate is 93% in 3mm target, 5mm is 95.3%, and 7mm is 95.8% respectively. The photometric interpolation is enhanced to 1.5% in comparison to be unused.

Underwater Moving Target Simulation by Transmission Line Matrix Modeling Approach (전달선로행렬 모델링에 의한 수중물체의 이동 시뮬레이션 방법에 대한 연구)

  • Park, Kyu-Chil;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1777-1783
    • /
    • 2013
  • We do research on the simulation of Doppler effect from a target's moving under the sea by Transmission Line Matrix modeling which is one of numerical methods on time domain. To implement the effect, the input signal was entered at a moving node according to a moving target's moving speed. The result had maximum 2.47% error compared with the theoretical value. And from simulation results with speed control of a moving target, we could also obtain resonable results within 0.63% error range.

Moving Target Tracking using Vision System for an Omni-directional Wheel Robot (전방향 구동 로봇에서의 비젼을 이용한 이동 물체의 추적)

  • Kim, San;Kim, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1053-1061
    • /
    • 2008
  • In this paper, a moving target tracking using a binocular vision for an omni-directional mobile robot is addressed. In the binocular vision, three dimensional information on the target is extracted by vision processes including calibration, image correspondence, and 3D reconstruction. The robot controller is constituted with SPI(serial peripheral interface) to communicate effectively between robot master controller and wheel controllers.

Real-time Automatic Target Tracking Using a Subtemplate of Moving Region (이동영역을 틀 영상으로 한 실시간 자동목표 추적)

  • 천인서;김남철;장익훈
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.684-695
    • /
    • 1987
  • In this paper, an improved matching method using subtemplate of moving region and 3-step search algorithm is proposed. It reduces heavy computational load of the conventional method and also can continuously track the target even with occlusion. The proposed method is applied to an automatic target tracker using high speed 16bit microprocessor in order to track one moving target in real time. Experimental results show that the proposed method has better performance over the conventional method in spite of greately reducing the computational load, even in case with complex background and/or with occlusion.

  • PDF

Identifying the Location of a Mobile Object in Real-time using PID-controlled Moving Objects Spatio-Temporal Model

  • Zhi, Wang;Sung, Kil-Young;Lee, Kyou-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.545-550
    • /
    • 2011
  • Trilateration is a typical method to locate an object, which requires inherently at least three prerecognized reference points. In some cases, owing to out of reachability to communication facilities the target node cannot be reachable always to three base stations. This paper presents a predictive method, which can identify the location of a moving target node in real time even though the target node could not get in touch with all three base stations. The method is based on the PIDcontrolled Moving Objects Spatio-Temporal Model Algorithm. Simulation results verify that this method can predict the moving direction of a moving target, and then combine with its past position information to judge accurately the location.

Tracking Robot Control of 2D Moving Target by a Robot Vision

  • Kim, Dong-Hwan;Jeon, Byoung-Joon;Hong, Young-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.99.4-99
    • /
    • 2002
  • A two-dimensional moving target is necessarily captured by a 5 dot robot system using a robot vision technique. Here, a robot vision system with a visual skill so that it can take information for a moving target or object, specially two dimensionally moving, is introduced and its algorithm and control strategy are presented associated with it. The tracking algorithm is proposed and its performance is verified by experiment. The camera first captures the object, then it captures again after certain second. The position difference generates the horizontal and vertical velocities of the moving target, hence the final destination is estimated at gripping line. At the same time, the robot s...

  • PDF

Velocity Estimation of Moving Targets on the Sea Surface by Azimuth Differentials of Simulated-SAR Image

  • Yang, Chang-Su;Kim, Youn-Seop;Ouchi, Kazuo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.297-304
    • /
    • 2010
  • Since the change in Doppler centroid according to moving targets brings alteration to the phase in azimuth differential signals of synthetic aperture radar (SAR) data, one can measure the velocity of the moving targets using this effect. In this study, we will investigate theoretically measuring the velocity of an object from azimuth differential signals by using range compressed data which is the interim outcome of treatment from the simulated SAR raw data of moving targets on the background of sea clutter. Also, it will provide evaluation for the elements that affect the estimation error of velocity from a single SAR sensor. By making RADARSAT-1 simulated image as a specific case, the research includes comparisons for the means of velocity measurement classified by the directions of movement in the four following cases. 1. A case of a single target without currents, 2. A case of a single target with tidal currents of 0.5 m/s, 1 m/s, and 3 m/s, 3. A case of two targets on a same azimuth line moving in a same direction and velocity, 4. A case of a single target contiguous to land where radar backscatter is strong. As a result, when two moving targets exist in SAR image outside the range of approximately 256 pixels, the velocity of the object can be measured with high accuracy. However, when other moving targets exist in the range of approximately 128 pixels or when the target was contiguous to the land of strong backscatter coefficient (NRCS: normalized radar cross section), the estimated velocity was in error by 10% at the maximum. This is because in the process of assuming the target's location, an error occurs due to the differential signals affected by other scatterers.

Moving Target Detection Algorithm for FMCW Automotive Radar (FMCW 차량용 레이더의 이동타겟 탐지 알고리즘 제안)

  • Hyun, Eu-Gin;Oh, Woo-Jin;Lee, Jong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.27-32
    • /
    • 2010
  • 77GHz FMCW(Frequency Modulation Continuous Wave) radar system has been used for automotive active safety systems. In typical automotive radar, the moving target detection and clutter cancellation including stationary targets are very important signal processing algorithms. This paper proposed the moving target detection algorithm which improve the detection probability and reduce the false alarm rate. First, the proposed moving target beat-frequency extraction filter is used in order to suppress clutter, and then the data association is applied by using the extracted moving target beat-frequency. Then, the zero-Doppler target is eliminated to remove the rest of clutter.

SD-MTD: Software-Defined Moving-Target Defense for Cloud-System Obfuscation

  • Kang, Ki-Wan;Seo, Jung Taek;Baek, Sung Hoon;Kim, Chul Woo;Park, Ki-Woong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.1063-1075
    • /
    • 2022
  • In recent years, container techniques have been broadly applied to cloud computing systems to maximize their efficiency, flexibility, and economic feasibility. Concurrently, studies have also been conducted to ensure the security of cloud computing. Among these studies, moving-target defense techniques using the high agility and flexibility of cloud-computing systems are gaining attention. Moving-target defense (MTD) is a technique that prevents various security threats in advance by proactively changing the main attributes of the protected target to confuse the attacker. However, an analysis of existing MTD techniques revealed that, although they are capable of deceiving attackers, MTD techniques have practical limitations when applied to an actual cloud-computing system. These limitations include resource wastage, management complexity caused by additional function implementation and system introduction, and a potential increase in attack complexity. Accordingly, this paper proposes a software-defined MTD system that can flexibly apply and manage existing and future MTD techniques. The proposed software-defined MTD system is designed to correctly define a valid mutation range and cycle for each moving-target technique and monitor system-resource status in a software-defined manner. Consequently, the proposed method can flexibly reflect the requirements of each MTD technique without any additional hardware by using a software-defined approach. Moreover, the increased attack complexity can be resolved by applying multiple MTD techniques.