• Title/Summary/Keyword: Moving robot

Search Result 724, Processing Time 0.034 seconds

Study of assuming system on moving route of the indoor self driving robot (실내형 자율 주행 로봇의 이동 경로 추정 시스템에 관한 연구)

  • Lee, Jang-Woo;Jo, Kyung-Hwa;Jung, Hee-Seung;Kim, Eung-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.370-371
    • /
    • 2015
  • 자율 주행 로봇의 기본적인 기능에는 위치 추정 기능과 무선 통신 기능이 포함된다. 이미지 센서를 이용하여 로봇의 이동 위치를 추정하고, 무선통신은 ZigBee를 적용하였다. 본 논문에서는 자율 주행 로봇의 이동 위치 정보를 이미지센서를 이용하여 데이터를 취득 후 마우스 알고리즘을 통해 이동 데이터로 환산하였으며, 이동 데이터를 ZigBee통신을 통해 서버와 실시간 통신을 하였다. 이를 통해 로봇의 이동 정보를 실시간으로 취득할 수 있는 실내형 로봇 위치 추정 시스템을 구현하였다.

Remote Control of Small Moving Object using Leap Motion Sensor (Leap Motion 센서를 사용한 소형 이동체의 원격제어)

  • Lee, So Yun;Han, Man Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.231-232
    • /
    • 2014
  • We develop a remote control system of a walking robot using a Leap motion sensor. Hand gestures and the position of fingers are provided from the Leap motion sensor. We use Processing and the LeapMotionP5 library for the development software.

  • PDF

Position Clustering of Moving Object based on Global Color Model (글로벌 칼라기반의 이동물체 위치 클러스터링)

  • Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.868-871
    • /
    • 2009
  • We propose an global color model based method for tracking motions of multiple human using a networked multiple-camera system in intelligent space as a human-robot coexistent system. An intelligent space is a space where many intelligent devices, such as computers and sensors(color CCD cameras for example), are distributed. Human beings can be a part of intelligent space as well. One of the main goals of intelligent space is to assist humans and to do different services for them. In order to be capable of doing that, intelligent space must be able to do different human related tasks. One of them is to identify and track multiple objects seamlessly.

  • PDF

Collision Avoidance Based on Null Space Projection for a Nonholonomic Mobile Manipulator (비홀로노믹 모바일 매니퓰레이터의 영공간 투영에 기반한 충돌 회피)

  • Kim, KyeJin;Yoon, InHwan;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.32-39
    • /
    • 2022
  • Since the mobile platform and the manipulator mounted on it move at the same time in a mobile manipulator, the risk of mutual collision increases. Most of the studies on collision avoidance of mobile manipulators cannot be applied to differential drive type mobile platforms or the end-effector tends to deviate from the desired trajectory for collision avoidance. In this study, a collision avoidance algorithm based on null space projection (CANS) that solves these two problems is proposed. To this end, a modified repulsive force that overcomes the non-holonomic constraints of a mobile platform is generated by adding a virtual repulsive force in the direction of its instantaneous velocity. And by converting this repulsive force into a repulsive velocity and applying it to the null space, the end-effector of the robot avoids a collision while moving along its original trajectory. The proposed CANS algorithm showed excellent performance through self-collision avoidance tests and door opening tests.

Implementation of Moving Robot for Trace of Target Object Using Video Camera and Distance Sensors (비디오 카메라 및 거리 센서를 이용한 이동 로봇의 특정물체 추적 방법 구현)

  • Lee, Young-Woong;Kim, Jong-Nam
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.159-160
    • /
    • 2009
  • 특정한 물체를 추적하는 방법에는 여러 가지가 있다. 사람의 경우 시각, 청각, 촉각, 미각 등의 여러가지 방법으로 물체를 추적하고 판단할 수 있는데 한 가지 방법 보다는 두 가지, 세 가지 방법을 동시에 사용하는 것이 물체를 추적하고 판단하는데 도움이 된다. 그러나 컴퓨터는 사용할 수 있는 정보가 제한적 이다. 물체를 추적하는데 있어서 영상데이터 만을 사용할 경우 물체가 가까이 있어 화면 전체를 차지할 경우 더 이상의 물체를 판단하기 힘들어 진다. 이러한 단점을 보완하기 위해 거리 센서를 부착함으로서 이동 로봇이 물체에 일정거리를 유지하면서 이동을 할 수 있도록 구현하였다.

Fuzzy PD+I Control Method for Two-wheel Balancing Mobile Robot (퍼지 PD+I 제어 방식을 적용한 Two-wheel Balancing Mobile Robot)

  • Eom, Ki-Hwan;Lee, Kyu-Yun;Lee, Hyun-Kwan;Kim, Joo-Woong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • A two-wheel balancing vehicle, which helps people moving freely and fast, and is applied from inverted pendulum system, has been widely researched and developed, and some products are came into a market in actuality. Until now, the two-wheel balancing vehicles developed have chosen the general PID control method. In this paper, we propose a new control method to improve a control capacity for a two-wheeled balancing vehicle for human transportation. The proposed method is the fuzzy PD+I control that is one of the improved PID control, and it contains a 2input-1output fuzzy system. This fuzzy system processes signals from proportional and derivative controller, and the fuzzy output signal generates the final output by summing up integral signal. The non-linearity of the fuzzy system makes an optimal output control signal by changing weight of the proportional signal and the derivative signal in process of time. We have simulated the fuzzy PD+I control system and experimented by implementing the two-wheel balancing mobile robot to verify the advantages of the proposed fuzzy PD+I control method in comparison with general PID control. As the results of simulation and experimentation, the proposed fuzzy PD+I control method has better control performance than general PID in this system and improves it.

Lunar Exploration Employing a Quadruped Robot on the Fault of the Rupes Recta for Investigating the Geological Formation History of the Mare Nubium (4족 보행 로봇을 활용한 달의 직선절벽(Rupes Recta)의 단층면 탐사를 통한 구름의 바다(Mare Nubium) 지역의 지질학적 형성 연구)

  • Hong, Ik-Seon;Yi, Yu;Ju, Gwanghyeok
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.64-75
    • /
    • 2021
  • On the moon as well as the earth, one of the easiest ways to understand geological formation history of any region is to observe the stratigraphy if it is available, the order in which the strata build up. By analyzing stratigraphy, it is possible to infer what geological events have occurred in the past. Mare Nubium also has an unique normal fault called Rupes Recta that shows stratigraphy. However, a rover moving with wheels is incompetent to explore the cliff since the Rupes Recta has an inclination of 10° - 30°. Therefore, a quadruped walking robot must be employed for stable expedition. To exploration a fault with a four-legged walking robot, it is necessary to design an expedition route by taking account of whether the stratigraphy is well displayed, whether the slope of the terrain is moderate, and whether there are obstacles and rough texture in the terrain based on the remote sensing data from the previous lunar missions. For the payloads required for fault surface exploration we propose an optical camera to grasp the actual appearance, a spectrometer to analyze the composition, and a drill to obtain samples that are not exposed outward.

Design of Indoor Electric Moving and Lifting Wheelchair with Minimum Rotation Radius and Obstacle Overcoming (최소 회전반경 및 장애물 극복형 실내 전동 이·승강 휠체어의 설계)

  • Kim, Young-Pil;Ham, Hun-Ju;Hong, Sung-Hee;Ko, Seok-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.415-424
    • /
    • 2019
  • In this paper, a minimum rotation radius was designed and fabricated to overcome the threshold so that elderly or disabled people who have difficulty moving can move and transfer safely and conveniently in a narrow room. In the indoor environment, where the sedentary culture develops, this study aimed to provide convenience for passengers with fracture diseases, geriatric diseases, and other knee and waist diseases. First, links, seats, armrests, covers, motors, batteries, chargers, controllers, etc. were attached to the frame so that they could be moved and lifted indoors. The product design and structure were designed considering the user's environment and physical characteristics, and IoT functions were added. A driving experiment was performed to confirm the operating performance of the manufactured indoor moving and lifting wheelchair. The performance tests, such as continuous running time, turning radius, maximum actuator load, maximum lift height, sound pressure level, minimum sensing distance of the driving aid sensor, interworking of server and app programs, device compatibility, and duty cycle error rate, were performed. As a result of the test, the built-in wheelchair could achieve the performance test target of each item and operate successfully.

Sensor Based Path Planning and Obstacle Avoidance Using Predictive Local Target and Distributed Fuzzy Control in Unknown Environments (예측 지역 목표와 분산 퍼지 제어를 이용한 미지 환경에서의 센서 기반 경로 계획 및 장애물 회피)

  • Kwak, Hwan-Joo;Park, Gwi-Tae
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.150-158
    • /
    • 2009
  • For the autonomous movement, the optimal path planning connecting between current and target positions is essential, and the optimal path of mobile robot means obstacle-free and the shortest length path to a target position. Many actual mobile robots should move without any information of surrounded obstacles. Thus, this paper suggests new methods of path planning and obstacle avoidment, suitable in unknown environments. This method of path planning always tracks the local target expected as the optimal one, and the result of continuous tracking becomes the first generated moving path. This path, however, do not regard the collision with obstacles. Thus, this paper suggests a new method of obstacle avoidance resembled with the Potential Field method. Finally, a simulation confirms the performance and correctness of the path planning and obstacle avoidance, suggested in this paper.

  • PDF

Robot vision system for face tracking using color information from video images (로봇의 시각시스템을 위한 동영상에서 칼라정보를 이용한 얼굴 추적)

  • Jung, Haing-Sup;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.4
    • /
    • pp.553-561
    • /
    • 2010
  • This paper proposed the face tracking method which can be effectively applied to the robot's vision system. The proposed algorithm tracks the facial areas after detecting the area of video motion. Movement detection of video images is done by using median filter and erosion and dilation operation as a method for removing noise, after getting the different images using two continual frames. To extract the skin color from the moving area, the color information of sample images is used. The skin color region and the background area are separated by evaluating the similarity by generating membership functions by using MIN-MAX values as fuzzy data. For the face candidate region, the eyes are detected from C channel of color space CMY, and the mouth from Q channel of color space YIQ. The face region is tracked seeking the features of the eyes and the mouth detected from knowledge-base. Experiment includes 1,500 frames of the video images from 10 subjects, 150 frames per subject. The result shows 95.7% of detection rate (the motion areas of 1,435 frames are detected) and 97.6% of good face tracking result (1,401 faces are tracked).