• Title/Summary/Keyword: Moving Sequence

Search Result 291, Processing Time 0.034 seconds

Design of a Recognizing System for Vehicle's License Plates with English Characters

  • Xing, Xiong;Choi, Byung-Jae;Chae, Seog;Lee, Mun-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.166-171
    • /
    • 2009
  • In recent years, video detection systems have been implemented in various infrastructures such as airport, public transportation, power generation system, water dam and so on. Recognizing moving objects in video sequence is an important problem in computer vision, with applications in several fields, such as video surveillance and target tracking. Segmentation and tracking of multiple vehicles in crowded situations is made difficult by inter-object occlusion. In the system described in this paper, the mean shift algorithm is firstly used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate or not. And then some characters in the license plate is recognized by using the fuzzy ARTMAP neural network, which is a relatively new architecture of the neural network family and has the capability to learn incrementally unlike the conventional BP network. We finally design a license plate recognition system using the mean shift algorithm and fuzzy ARTMAP neural network and show its performance via some computer simulations.

A Study of Automatic Vehicle Control by Image Processing (화상처리 기술을 이용한 자동차 교통 제어에 관한 연구)

  • Choe, Hyeong-Jin;Yang, Hae-Sul
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.3
    • /
    • pp.418-426
    • /
    • 1994
  • Auto Navigation System is to provide a vehicle driver with more driving information by developing a computer-based system which supports advanced knowledge to a vehicle driving automation system and a driver. In this paper, we propose a new algorithm for the extraction of passing car which removes a background region using a series of images. First, we generate two difference images from three original images by getting the difference values between every two of them in sequence. Second, we generate two mask images from the two difference images. Finally, we extract passing car using the one original image and the two mask images. Using this algorithm we can extract the moving object in the outdoors.

  • PDF

Setting an Initial Validation Gate based on Signal Intensity for Target Tracking in IR Image Sequences (적외선 영상에서 표적 추적을 위한 신호세기 기반 초기 유효게이트 설정 방법)

  • Yang, Yu Kyung;Kim, Jieun;Lee, Boohwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.108-114
    • /
    • 2014
  • This paper describes a method to set an intensity-based initial validation gate for tracking filter while preserves the ability of tracking a target with maximum speed. First, we collected real data set of signal versus distance of an airplane target. And at each data point, we computed maximum distance the target can move. And a function is modeled to expect the maximum moving pixels on the lateral direction based on the intensity of the detected target in IR image sequence. The initial prediction error covariance can be computed using this function to decide the size of the initial validation gate. The simulation results show the proposed method can set the appropriate initial validation gates to track the targets with the maximum speed.

Finger-Pointing Gesture Analysis for Slide Presentation

  • Harika, Maisevli;Setijadi P, Ary;Hindersah, Hilwadi;Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1225-1235
    • /
    • 2016
  • This paper presents a method for computer-assisted slide presentation using vision-based gesture recognition. The proposed method consists of a sequence of steps, first detecting a hand in the scene of projector beam, then estimating the smooth trajectory of a hand or a pointing finger using Kalman Filter, and finally interfacing to an application system. Additional slide navigation control includes moving back and forth the pages of the presentation. The proposed method is to help speakers for an effective presentation with natural improved interaction with the computer. In particular, the proposed method of using finger pointing is believed to be more effective than using a laser pointer since the hand, the pointing or finger are more visible and thus can better grab the attention of the audience.

View synthesis with sparse light field for 6DoF immersive video

  • Kwak, Sangwoon;Yun, Joungil;Jeong, Jun-Young;Kim, Youngwook;Ihm, Insung;Cheong, Won-Sik;Seo, Jeongil
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.24-37
    • /
    • 2022
  • Virtual view synthesis, which generates novel views similar to the characteristics of actually acquired images, is an essential technical component for delivering an immersive video with realistic binocular disparity and smooth motion parallax. This is typically achieved in sequence by warping the given images to the designated viewing position, blending warped images, and filling the remaining holes. When considering 6DoF use cases with huge motion, the warping method in patch unit is more preferable than other conventional methods running in pixel unit. Regarding the prior case, the quality of synthesized image is highly relevant to the means of blending. Based on such aspect, we proposed a novel blending architecture that exploits the similarity of the directions of rays and the distribution of depth values. By further employing the proposed method, results showed that more enhanced view was synthesized compared with the well-designed synthesizers used within moving picture expert group (MPEG-I). Moreover, we explained the GPU-based implementation synthesizing and rendering views in the level of real time by considering the applicability for immersive video service.

A Context-Aware System for Reliable RFID-based Logistics Management (RFID 기반 물류관리의 신뢰성 향상을 위한 상황인지 시스템 개발)

  • Jin, Hee-Ju;Kim, Hoontae;Lee, Yong-Han
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.2
    • /
    • pp.223-240
    • /
    • 2013
  • RFID(Radio Frequency Identification) is use of an RFID tag applied to object for the purpose of identification and tracking using radio waves. Recently, it is being actively researched and introduced in logistics and manufacturing. RFID portals in supply chains are meant to identify all the tags within a given interrogation zone. Hence the hardware and software mechanisms for RFID tag identification mostly focus on successful read of multiple tags simultaneously. Such mechanisms, however, are inefficient for determining moving direction of tags, sequence of consecutive tags, and validity of the tag reads from the viewpoint of workflow. These types of problems usually cause many difficulties in RFID portal implementation in manufacturing environment, there by having RFID-system developers waste a considerable amount of time. In this research, we designated an RFID portal system with SDO(Sequence, Direction, and Object-flow)-perception capability by using fundamental data supplied by ordinary RFID readers. Using our work, RFID system developers can save a great amount of time building RFID data-capturing applications in manufacturing environment.

Research on the Spatial Expression Characteristics of illustration in Picture Books (스토리형 그림책 속의 삽화 디자인의 시간적 표현 연구)

  • Han, YongGang;Kim, KieSu
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.59-70
    • /
    • 2021
  • This paper studies and analyzes the effect of illustrations in picture books on time representation with fictional picture books as the study scope. In this paper, the time type of picture books can be divided into time point, timeline and time rhythm, referring to case analysis from time symbolic elements, picture layout and picture sequence respectively. First of all, time symbolic elements are referred to the time point and time rhythm. The materialized time symbolic element is things that can directly represent time and trigger associations with time; the color symbolic element means the color changes in the real world within a certain time; the contrast of light and shadow corresponds to the changes in a day. Fast-moving objects will be presented with dashed or blurred lines, while static, stable and slow objects will be depicted with solid lines. Secondly, the picture layout of illustrations in picture books is suitable for representing the content of the timeline and describing the sequence or causality of events. Finally, the picture sequence can represent the timeline, time rhythm and "synchronicity". It will make use of visual logic to win readers' trust in time information expressed in pictures, and then follow and connect viewpoints on the basis of adapting to reading habits. The essence of time representation in picture books is to express time by space, and use different combinations of elements in space and visual guidance to convey time information.

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

Extracting Silhouettes of a Polyhedral Model from a Curved Viewpoint Trajectory (곡선 궤적의 이동 관측점에 대한 다면체 모델의 윤곽선 추출)

  • Kim, Gu-Jin;Baek, Nak-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2002
  • The fast extraction of the silhouettes of a model is very useful for many applications in computer graphics and animation. In this paper, we present an efficient algorithm to compute a sequence of perspective silhouettes for a polyhedral model from a moving viewpoint. The viewpoint is assumed to move along a trajectory q(t), which is a space curve of a time parameter t. Then, we can compute the time-intervals for each edge of the model to be contained in the silhouette by two major computations: (i) intersecting q(t) with two planes and (ii) a number of dot products. If q(t) is a curve of degree n, then there are at most of n + 1 time-intervals for an edge to be in a silhouette. For each time point $t_i$ we can extract silhouette edges by searching the intervals containing $t_i$ among the computed intervals. For the efficient search, we propose two kinds of data structures for storing the intervals: an interval tree and an array. Our algorithm can be easily extended to compute the parallel silhouettes with minor modifications.

  • PDF

A New Face Tracking Method Using Block Difference Image and Kalman Filter in Moving Picture (동영상에서 칼만 예측기와 블록 차영상을 이용한 얼굴영역 검출기법)

  • Jang, Hee-Jun;Ko, Hye-Sun;Choi, Young-Woo;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.163-172
    • /
    • 2005
  • When tracking a human face in the moving pictures with complex background under irregular lighting conditions, the detected face can be larger including background or smaller including only a part of the face. Even background can be detected as a face area. To solve these problems, this paper proposes a new face tracking method using a block difference image and a Kalman estimator. The block difference image allows us to detect even a small motion of a human and the face area is selected using the skin color inside the detected motion area. If the pixels with skin color inside the detected motion area, the boundary of the area is represented by a code sequence using the 8-neighbor window and the head area is detected analysing this code. The pixels in the head area is segmented by colors and the region most similar with the skin color is considered as a face area. The detected face area is represented by a rectangle including the area and its four vertices are used as the states of the Kalman estimator to trace the motion of the face area. It is proved by the experiments that the proposed method increases the accuracy of face detection and reduces the fare detection time significantly.