• Title/Summary/Keyword: Movie analysis

Search Result 491, Processing Time 0.024 seconds

Comparison of similarity measures and community detection algorithms using collaboration filtering (협업 필터링을 사용한 유사도 기법 및 커뮤니티 검출 알고리즘 비교)

  • Ugli, Sadriddinov Ilkhomjon Rovshan;Hong, Minpyo;Park, Doo-Soon
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.366-369
    • /
    • 2022
  • The glut of information aggravated the process of data analysis and other procedures including data mining. Many algorithms were devised in Big Data and Data Mining to solve such an intricate problem. In this paper, we conducted research about the comparison of several similarity measures and community detection algorithms in collaborative filtering for movie recommendation systems. Movielense data set was used to do an empirical experiment. We applied three different similarity measures: Cosine, Euclidean, and Pearson. Moreover, betweenness and eigenvector centrality were used to detect communities from the network. As a result, we elucidated which algorithm is more suitable than its counterpart in terms of recommendation accuracy.

Performance Analysis of Explainers for Sentiment Classifiers of Movie Reviews (영화평 감성 분석기를 대상으로 한 설명자의 성능 분석)

  • Park, Cheon-Young;Lee, Kong Joo
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.563-568
    • /
    • 2020
  • 본 연구에서는 블랙박스로 알려진 딥러닝 모델에 설명 근거를 제공할 수 있는 설명자 모델을 적용해 보았다. 영화평 감성 분석을 위해 MLP, CNN으로 구성된 딥러닝 모델과 결정트리의 앙상블인 Gradient Boosting 모델을 이용하여 감성 분류기를 구축하였다. 설명자 모델로는 기울기(gradient)을 기반으로 하는 IG와 레이어 사이의 가중치(weight)을 기반으로 하는 CAM, 그리고 설명가능한 대리 모델을 이용하는 LIME과 입력 속성에 대한 선형모델을 추정하는 SHAP을 사용하였다. 설명자 모델의 특성을 보기 위하여 히트맵과 관련성 높은 N개의 속성을 추출해 보았다. 설명자가 제공하는 기여도에 따라 입력 속성을 제거해 가며 분류기 성능 변화를 측정하는 정량적 평가도 수행하였다. 또한, 사람의 판단 근거와의 일치도를 살펴볼 수 있는 '설명 근거 정확도'라는 새로운 평가 방법을 제안하여 적용해 보았다.

  • PDF

Movie Revies Sentiment Analysis Considering the Order in which Sentiment Words Appear (감성 단어 등장 순서를 고려한 영화 리뷰 감성 분석)

  • Kim, Hong-Jin;Kim, Dam-Rin;Kim, Bo-Eun;Oh, Shin-Hyeok;Kim, Hark-Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.313-316
    • /
    • 2020
  • 감성 분석은 문장의 감성을 분석해 긍정 또는 부정으로 분류하는 작업을 의미한다. 문장에 담긴 감성을 파악해야 하기 때문에 문장 전체를 이해하는 것이 중요하다. 그러나 한 문장에 긍정과 부정의 이중 극성이 동존하는 문장은 감성 분석에 혼동이 생길 수 있다. 본 논문에서는 이와 같은 문제를 해결하기 위해 단어의 감성 점수 예측을 통해 감성 단어 등장 순서를 고려한 감성 분석 모델을 제안한다. 또한 최근 다양한 자연어 처리 분야에서 좋은 성능을 보이는 사전 학습 언어 모델을 활용한다. 실험 결과 감성 분석 정확도 90.81%로 기존 모델들에 비해 가장 좋은 성능을 보였다.

  • PDF

Movie Corpus Emotional Analysis Using Emotion Vocabulary Dictionary (감정 어휘 사전을 활용한 영화 리뷰 말뭉치 감정 분석)

  • Jang, Yeonji;Choi, Jiseon;Park, Seoyoon;Kang, Yejee;Kang, Hyerin;Kim, Hansaem
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.379-383
    • /
    • 2021
  • 감정 분석은 텍스트 데이터에서 인간이 느끼는 감정을 다양한 감정 유형으로 분류하는 것이다. 그러나 많은 연구에서 감정 분석은 긍정과 부정, 또는 중립의 극성을 분류하는 감성 분석의 개념과 혼용되고 있다. 본 연구에서는 텍스트에서 느껴지는 감정들을 다양한 감정 유형으로 분류한 감정 말뭉치를 구축하였는데, 감정 말뭉치를 구축하기 위해 심리학 모델을 기반으로 분류한 감정 어휘 사전을 사용하였다. 9가지 감정 유형으로 분류된 한국어 감정 어휘 사전을 바탕으로 한국어 영화 리뷰 말뭉치에 9가지 감정 유형의 감정을 태깅하여 감정 분석 말뭉치를 구축하고, KcBert에 학습시켰다. 긍정과 부정으로 분류된 데이터로 사전 학습된 KcBert에 9개의 유형으로 분류된 데이터를 학습시켜 기존 모델과 성능 비교를 한 결과, KcBert는 다중 분류 모델에서도 우수한 성능을 보였다.

  • PDF

Identifying the Actual Impact of Online Social Interactions on Demand

  • Dong Soo Kim
    • Asia Marketing Journal
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 2024
  • Firms often engage in manipulating online reviews as a promotional activity to influence consumers' evaluation on their products. With the prevalence of the promotional activities, consumers may notice and discount the reviews generated by the promotional activities. Discounting the firm-generating reviews may cause systematic measurement errors in the valence variable and lead to a negative bias when estimating the effect of consumers' organic reviews on demand. To correct the bias, this study proposes including product-specific bias-correction terms representing the proportion of extreme reviews in analysis. For illustration, the proposed method is applied to a demand model for data of movies released in South Korea. The results confirm a negative bias in the estimate of the valence sensitivity of demand. The negative bias potentially leads to an underestimation of the magnitude of the contagion effect through social interactions, a key component of evaluating the value of a satisfied consumer.

The Study on A Peculiarity of Mise-en-scene Found in Animation :Focused on Russian Animation (애니메이션 미장센 특성 연구 - 러시아 애니메이션을 중심으로)

  • Kim, MiRNaRae;Min, JunIl
    • Cartoon and Animation Studies
    • /
    • s.44
    • /
    • pp.1-31
    • /
    • 2016
  • In this thesis, the movie with mise-en-scene established was compared with the peculiarity of the play that is the etymological source of the term to identify the peculiarity of mise-en-scene which was substituted into animation to find the peculiarity of mise-en-scene in animation. To emphasize the direct connection between the frame's visual peculiarity and the director's opinions, the mise-en-scene of director centered animation created under a restricted environment was reviewed. Mise-en-scene which started from movie critics theory does not simply mean the arrangement of images in a frame. Mise-en-scene emphasizes the exposure of the work's motive by the visual components. The animation's assuming the middle point of environmental share possessed by play and movie when schematizing the genre peculiarity of animation, play and movie was a noteworthy result. It can be said that the cause is that the animation's peculiarity yield different results depending on the making methods; we verified that this is a key factor in the analysis of animation's mise-en-scene. I emphasized that the peculiarity of animation mise-en-scene is in its making method and material and suggested identifying the work's making methods and analyzing the work's aesthetic results derived in this way. The russian animation which was perceived as peripheral arts was relatively free from the burden of censorship while receiving support from the Soviet as a media for propaganda. The russian animation's mise-en-scene which found the material for its works in the country's folklore was metaphorical, focused on new expression forms and achieved experimental elements. Russian animation pursues a unique aesthetic world through space expression based on the forms of opera or ballet and heavy motions formed static inbetweens.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

An Analysis of the Convergence Factors, Convergence Passes, and Convergence Types in Content Industries (콘텐츠의 융합요소 및 융합경로와 융합유형 분석)

  • Rim, Myung Hwan;Lee, Jung Mann
    • Journal of Information Technology Applications and Management
    • /
    • v.20 no.3_spc
    • /
    • pp.295-314
    • /
    • 2013
  • These days a great mix of traditional and digital contents such as movie, broadcasting, advertisement, e-books, music, game, animation, cartoon, character, knowledge information, and art performance are widely available. Many more are yet to come, with improved quality and added features. It is expected that all these contents will be evolved into a new breed of convergence content through the process of consolidation, expansion, integration, and recreation. Across the digital ecosystem, a new formula is being added to the industrial structure : 'Information/Content-Platform/Device-Goods/Service.' In the near future, as a result of technological innovation and convergence, the business sector will lose its boundaries as well, as businesses will be forced to look beyond the product itself and focus more on multi-functionality. Especially, in the era of creative economy, more policies need to be crafted in order to procure a new growth engine for the future with the agenda for convergence between humanities and technology. Therefore, the purpose of this paper is to analyze the concept, factors, elements, types, and cases of convergence, which are the essence of content convergence. This analysis, with its focus on the convergence process, will help identify the effects and limits of content convergence as well as the prospects for convergence contents in the smart ecosystem under the creative economic system.

A Study on the Costume Color of the Film 『Handmaiden』 - Focused on the Heroin 'Hideko's costumes - (영화 「아가씨」 의상 색채 연구 - 여주인공 히데코 의상을 중심으로 -)

  • Yang, Junghee
    • Fashion & Textile Research Journal
    • /
    • v.20 no.3
    • /
    • pp.257-265
    • /
    • 2018
  • This study investigated the colors of the costumes in the film 'The Handmaiden'. The author categorized and examined the hue and tone of the main character's costume as well as provided an adjective image surveyed from the standpoint of the audience in order find if the intended story of the director is delivered to the audience through costume colors. Study method analyzed 25 set costume colors of the heroine 'Hideko'. The color analysis were analyzed by capturing DVD images that showed the costume of 'Hideko'. The colors of costumes were analyzed by recognition through the eyes based on the IRI, Hue, and Tone 120. In addition, the analysis of the IRI adjectives image were conducted through the survey. Costume hue of the heroine 'Hideko' in the film 'The Handmaiden' were black, yellow, white, green, and purple. There were many colorful costumes in the movie. Tones were very pale, deep, bright, vivid, strong, and pale. Chroma were evenly distributed and brightness were distributed in the order high, middle, and low. They were interpreted as the intention of showing the situation and psychology of 'Hideko' in various scenes of the film through various costume colors. Color images of the film 'The Handmaiden' were classified as feminine, mature, classy, delicate, classic, noble, polished, refined, showy, western, mellow, pure, and decorative.

Analysis of DMB Adoption Intentions According to Preferred Contents and Other Media Usage Characteristics (디지털 멀티미디어 방송의 선호 콘텐츠 및 타 매체 이용특성에 따른 의용의향 요인 분석)

  • Kim, Dong-Ju;Shin, Seung-Do
    • Korean Management Science Review
    • /
    • v.25 no.1
    • /
    • pp.123-138
    • /
    • 2008
  • Recently, DMB service markets experience a rapid change with terrestrial DMB test-broadcasting for the nation-wide coverage and paid interactive data broadcasting being offered utilizing TPEG and BIFS technologies. This warrants a reexamination of a consumers' adoption intentions for DMB service. This paper uses a survey data set to analyze DMB adoption intentions and the choice between terrestrial DMB and satellite DMB services according to preferred contents and other media usage characteristics. Empirical results show that consumer who prefer TV, music, and movie contents are more likely to adopt DMB service, whereas consumers with high intentions for HSDPA subscription are less likely to adopt DMB service. This implies that continuing development of killer application and the analysis of substitutes or complements of other media are crucial for the increase of DMB adoption intentions. It is found that the more consumers prefer sports, movies and entertainment/game and put higher values in the quality of the contents, the more likely they adopt satellite DMB service. Meanwhile, the more consumers prefer TV, drama and news contents, and are sensitive to the subscription fees, they are more likely to adopt terrestrial DMB service. Therefore, it seem that consumers' DMB adoption between terrestrial and satellite services is crucially related with types and characteristics of contents offered.